Covering a Graph with Minimal Local Sets

Nathan Claudet and Simon Perdrix

WG2024 - 19/06/24 arXiv:2402.10678

1 Motivation : Quantum graph states

2 (Minimal) local sets

3 Links with the cut-rank function

4 Conclusion

This work only covers undirected¹ and simple² graphs.

¹Edges do not have a direction.

²No multiples edges and no loops.

Motivation : Quantum graph states

A graph state is a quantum state represented by an undirected and simple graph. The vertices represent the qubits³ and the edges represent entanglement 4 .

$$| \, G
angle = rac{1}{\sqrt{8}} \left(|000
angle + |001
angle + |010
angle - |011
angle + |100
angle + |101
angle - |110
angle + |111
angle
ight)$$

³The qubit is the quantum version of the classical binary bit.

 $^{^{4}\}mathsf{Two}$ particles are entangled if they cannot be described independently of the state of the others

Definition (Local complementation)

Given a graph G, a **local complementation** on a vertex u consists in complementing the (open) neighborhood of u in G.

Definition (Local complementation)

Given a graph G, a **local complementation** on a vertex u consists in complementing the (open) neighborhood of u in G.

Definition (Local complementation)

Given a graph G, a **local complementation** on a vertex u consists in complementing the (open) neighborhood of u in G.

(Minimal) local sets

Odd neighborhood

Definition (Odd neighborhood)

Given a set of vertices D, the **odd neighborhood** $Odd_G(D)$ of D is the set of vertices that are neighbors of an odd number of vertices in D.

Odd neighborhood

Definition (Odd neighborhood)

Given a set of vertices D, the **odd neighborhood** $Odd_G(D)$ of D is the set of vertices that are neighbors of an odd number of vertices in D.

Odd neighborhood

Definition (Odd neighborhood)

Given a set of vertices D, the **odd neighborhood** $Odd_G(D)$ of D is the set of vertices that are neighbors of an odd number of vertices in D.

(Minimal) local sets

Definition

A **local set** is a non-empty vertex set of the form $L = D \cup Odd_G(D)$. A **minimal local set** is a local set that is minimal by inclusion (i.e it doesn't strictly contain another local set).

a minimal local set

Properties of minimal local sets

Proposition

(Minimal) local sets are invariant by local complementation.

Properties of minimal local sets

Proposition

(Minimal) local sets are invariant by local complementation.

Proposition (Høyer, Mhalla, Perdrix 2006)

Given a minimal local set L, for any $x \in L$, there exists a sequence of local complementations mapping G to a graph G', such that $L = \{x\} \cup N_{G'}(x)$.

Main result

Theorem

Any graph is covered by its minimal local sets, i.e. every vertex is contained in at least one minimal local set.

Links with the cut-rank function

The cut-rank function

Definition (Cut-rank function)

For $A \subseteq V$, let the cut-matrix $\Gamma_A = ((\Gamma_A)_{ab} : a \in A, b \in V \setminus A)$ be the matrix with coefficients in \mathbb{F}_2 such that $\Gamma_{ab} = 1$ if and only if $(a, b) \in E$. The **cut-rank function** of G is

$$\mathsf{cutrk} \colon 2^V \longrightarrow \mathbb{N}$$

 $A \longmapsto \mathsf{rank}(\Gamma_A)$

 $A \subseteq V$ is said full cut-rank if cutrk(A) = |A|.

 $cutrk(\emptyset) = cutrk(\{1, 2, 3, 4, 5\}) = 0$ $cutrk(\{1, 5\}) = 2$: full cut-rank $cutrk(\{1, 2, 5\}) = 2$

Minimal local sets defined with the cut-rank function

Proposition

Given a graph G = (V, E) and $A \subseteq V$, A is a minimal local set if and only if A is not full cut-rank, but each of its proper subset is.

$$cutrk(\{1, 2, 5\}) = 2$$

$$cutrk(\{1,2\}) = cutrk(\{1,5\})$$
$$= cutrk(\{2,5\}) = 2: \text{ full cut-rank}$$

$$cutrk({1}) = cutrk({2})$$

= $cutrk({5}) = 1$: full-cut-rank

 $cutrk(\emptyset) = 0$: full-cut-rank

Given a vertex x, we want to find a minimal local set that contains x.

Lemma

Given a vertex x, we want to find a minimal local set that contains x.

Lemma

Given a vertex x, we want to find a minimal local set that contains x.

Lemma

Given a vertex x, we want to find a minimal local set that contains x.

Lemma

Given a vertex x, we want to find a minimal local set that contains x.

Lemma

Given a vertex x, we want to find a minimal local set that contains x.

Lemma

Given a vertex x, we want to find a minimal local set that contains x.

Lemma

Given a vertex x, we want to find a minimal local set that contains x.

Lemma

The proof uses only the fact that the cut-rank function is a function with values in \mathbb{N} which satisfies the following properties:

- symmetry: $\forall A \subseteq V$, $\operatorname{cutrk}(V \setminus A) = \operatorname{cutrk}(A)$,
- linear boundedness: $\forall A \subseteq V$, $\operatorname{cutrk}(A) \leq |A|$,
- submodularity:

 $\forall A, B \subseteq V, \ \operatorname{cutrk}(A \cup B) + \operatorname{cutrk}(A \cap B) \leqslant \operatorname{cutrk}(A) + \operatorname{cutrk}(B).$

Let λ_M be the connectivity function of a matroid M with ground set E: if $X \subseteq E$, $\lambda_M(X) = r(X) + r(E - X) - r(M)$.

Define a λ_M -minimal local set as a set $A \subseteq X$ such that $\lambda_M(A) \leq |A| - 1$ but for every $B \subsetneq A$, $\lambda_M(B) = |B|$.

Theorem

Any matroid M is covered by its λ_M -minimal local sets, i.e. every element is contained in at least one λ_M -minimal local set.

• Definition of minimal local sets using the cut-rank function.

- Definition of minimal local sets using the cut-rank function.
- Every vertex is contained in at least one minimal local set.

- Definition of minimal local sets using the cut-rank function.
- Every vertex is contained in at least one minimal local set.
- The result generalises to any submodular, symmetric and linearly bounded function in $\mathbb{N} \implies$ applications ?

Thanks

arXiv:2402.10678