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Disclaimer

This work only covers undirected1 and simple2 graphs.

1Edges do not have a direction.
2No multiples edges and no loops.
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Motivation : Quantum graph states
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Quantum graph states

A graph state is a quantum state represented by an undirected and simple
graph. The vertices represent the qubits3 and the edges represent
entanglement 4.
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|G ⟩ = 1√
8
(|000⟩+ |001⟩+ |010⟩ − |011⟩+ |100⟩+ |101⟩ − |110⟩+ |111⟩)

3The qubit is the quantum version of the classical binary bit.
4Two particles are entangled if they cannot be described independently of the state

of the others
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Local complementation

Definition (Local complementation)

Given a graph G , a local complementation on a vertex u consists in
complementing the (open) neighborhood of u in G .
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(Minimal) local sets
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Odd neighborhood

Definition (Odd neighborhood)

Given a set of vertices D, the odd neighborhood OddG (D) of D is the
set of vertices that are neighbors of an odd number of vertices in D.
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(Minimal) local sets

Definition

A local set is a non-empty vertex set of the form L = D ∪ OddG (D).
A minimal local set is a local set that is minimal by inclusion (i.e it
doesn’t strictly contain another local set).
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Properties of minimal local sets

Proposition

(Minimal) local sets are invariant by local complementation.

1

2

3

4

5

τ2

1

2

3

4

5

L

D

L

D

Proposition (Høyer, Mhalla, Perdrix 2006)

Given a minimal local set L, for any x ∈ L, there exists a sequence of local
complementations mapping G to a graph G ′, such that L = {x} ∪ NG ′(x).
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Main result

Theorem

Any graph is covered by its minimal local sets, i.e. every vertex is
contained in at least one minimal local set.
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Links with the cut-rank function
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The cut-rank function

Definition (Cut-rank function)

For A ⊆ V , let the cut-matrix ΓA = ((ΓA)ab : a ∈ A, b ∈ V \ A) be the
matrix with coefficients in F2 such that Γab = 1 if and only if (a, b) ∈ E .
The cut-rank function of G is

cutrk : 2V −→ N
A 7−→ rank(ΓA)

A ⊆ V is said full cut-rank if cutrk(A) = |A|.
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cutrk(∅) = cutrk({1, 2, 3, 4, 5}) = 0

cutrk({1, 5}) = 2 : full cut-rank

cutrk({1, 2, 5}) = 2
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Minimal local sets defined with the cut-rank function

Proposition

Given a graph G = (V ,E ) and A ⊆ V , A is a minimal local set if and only
if A is not full cut-rank, but each of its proper subset is.
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cutrk({1, 2, 5}) = 2

cutrk({1, 2}) = cutrk({1, 5})
= cutrk({2, 5}) =2: full cut-rank

cutrk({1}) = cutrk({2})
= cutrk({5}) = 1: full-cut-rank

cutrk(∅) = 0: full-cut-rank
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Algorithm

Given a vertex x , we want to find a minimal local set that contains x .

Lemma

For any full-cut-rank set A, there exists a disjoint full-cut-rank set of same
size.
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At some point, A is full cut-rank

but A ∪ {x} is not.
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Generalisation to any function with similar properties

The proof uses only the fact that the cut-rank function is a function with
values in N which satisfies the following properties:

symmetry: ∀A ⊆ V , cutrk(V \ A) = cutrk(A),

linear boundedness: ∀A ⊆ V , cutrk(A) ⩽ |A|,
submodularity:
∀A,B ⊆ V , cutrk(A ∪ B) + cutrk(A ∩ B) ⩽ cutrk(A) + cutrk(B).
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Example of another use case: matroids

Let λM be the connectivity function of a matroid M with ground set E : if
X ⊆ E , λM(X ) = r(X ) + r(E − X )− r(M).

Define a λM -minimal local set as a set A ⊆ X such that λM(A) ⩽ |A| − 1
but for every B ⊊ A, λM(B) = |B|.

Theorem

Any matroid M is covered by its λM -minimal local sets, i.e. every element
is contained in at least one λM -minimal local set.
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Conclusion
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Conclusion

Definition of minimal local sets using the cut-rank function.

Every vertex is contained in at least one minimal local set.

The result generalises to any submodular, symmetric and linearly
bounded function in N =⇒ applications ?
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Thanks

arXiv:2402.10678
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