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Graph states

A graph state is a quantum state represented by an undirected1 and
simple2 graph. The vertices represent the qubits and the edges represent
entanglement.
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Stabilizer states

Graph states are a subfamilly of stabilizer states because for each vertex u,
applying X on u and applying Z on the neighbours of u leaves the graph
state invariant.
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Entanglement of graph states

Graph states are useful entangled resources (MBQC, quantum networks...).
→ It is a fundamental problem to know whether two graph states have the
same entanglement, i.e. the graph states are related by SLOCC.

Theorem (Van den Nest, Dehaene, De Moor, 2004)

Two graph states are SLOCC-equivalent iff they are local unitary
equivalent (or LU-equivalent), i.e. they are related by a tensor product of
single-qubit unitaries.
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An easier subproblem: local Clifford equivalence

Two graph states are said local Clifford equivalent (or LC-equivalent) if
they are related by unitaries in the local Clifford group.
Single-qubit Clifford group = < H,Z (π/2) >.
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Theorem (Van den Nest, Dehaene, De Moor, 2004)

Two graph states are LC-equivalent iff the two corresponding graphs are
related by local complementations.
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Local complementation

Definition (Kotzig, 1966)

A local complementation on a vertex u consists in complementing the
(open) neighbourhood of u.
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Algorithmic aspect of local Clifford equivalence

Proposition (Bouchet, 1991)

There exists an efficient algorithm to decide if two graphs are related by
local complementations.

→ algorithm to decide if two graph states are LC-equivalent.
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Quick history of the LU=LC conjecture
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The LU=LC conjecture

Formulated in the early 2000’s.

Conjecture

LU=LC i.e. if two graph states are LU-equivalent (local unitaries) then
they are LC-equivalent (local Clifford).
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The LU=LC conjecture is false

LU ̸= LC, i.e. local unitary equivalence and local Clifford equivalence do
not coincide.

→ 27-qubit pair of graph states that are LU-equivalent but
not LC-equivalent (Ji et al. 2008).
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Another look at the 27-vertex counterexample

The 27-vertex counterexample is LC-equivalent to a prettier pair of graphs
(Tsimakuridze, Gühne, 2017).
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Other results after LU ̸= LC

Proposition (Sarvepalli, Raussendorf, 2010)

There exist infinitely many counterexamples to the LU=LC conjecture.

Some other families of graph states for which LU=LC i.e. local
complementation captures local unitary equivalence, have been discovered:

Graph states over at most 8 qubits (Cabello et al. 2009)

Large enough cluster states (Sarvepalli, Raussendorf, 2010)

But what about LU-equivalence for any graph? Can we construct a
graphical characterisation?
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Generalizing local complementation to capture

local unitary equivalence
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A refinement of idempotent local complementations

A sequence of local complementations may leave the graph invariant.
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A 2-local complementation consists in toggling every edge that was
toggled 2 mod 4 times by the idempotent local complementations.
(There are also some additional conditions on the edges for the 2-local
complementation the be valid.)
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Example of a 2-local complementation

. . . . . .

Z(π
4
) Z(π

4
) Z(π

4
)Z(π

4
) Z(π

4
) Z(π

4
)

X (π
4
) X (π

4
) X (π

4
) X (π

4
)



16
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r -local complementation

3-local complementation is a refinement of idempotent 2-local
complementation, and so on...
→ Infinite family of graphical operations parametrised by an integer r :

r-local complementations

1-local complementation = local complementation.
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Graphical characterization of entanglement

Recall: LC-equivalent ⇔ related by local unitaries generated by finitely
many H and Z (π/2).
Define: LCr -equivalent ⇔ related by local unitaries generated by finitely
many H and Z (π/2r ).

⇔ related by local unitaries in the level r + 1 of the Clifford hierarchy.

Theorem (C, Perdrix, 2025)

Two graph states are LCr -equivalent iff the two corresponding graphs are
related by r-local complementations.

For r = 1, we recover local Clifford ⇔ local complementation.

Theorem (C, Perdrix, 2025)

Two graph states are LU-equivalent iff the two corresponding graphs are
related by r-local complementations for some r.
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An infinite hierarchy of local equivalences

G1 and G2 are related
by local complementations

by 2-local
complementations

by 3-local
complementations

...
G1 and G2 are local
unitary equivalent
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Proof that r-local complementation captures

LU-equivalence
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Minimal local sets

Definition (Odd neighbourhood)

Given a set of vertices D, the odd neighbourhood OddG (D) of D is the
set of vertices that are neighbours of an odd number of vertices in D.
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Minimal local sets

Definition

A local set is a non-empty vertex set of the form L = D ∪ OddG (D).
A minimal local set is a local set that is minimal by inclusion (i.e it
doesn’t strictly contain another local set).
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Minimal local set

Proposition

(Minimal) local sets are LU-invariant, i.e. two LU-equivalent graph states
have the same minimal local sets.

Local sets ⇔ stabilizers of the graph state : XDZOdd(D).

Minimal local sets ⇔ stabilizers of minimal support.

Minimal local sets carry information on the possible local unitaries that
maps graph states to other graph states.
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Minimal local sets cover any graph

Theorem (C, Perdrix, 2024)

Each vertex of a graph is covered by at least one minimal local set.
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Proof sketch: Standard form for graph states

G1 G2

local unitaries

X (α)

Z (β)
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VZ
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complementations
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r -local complementation
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Some areas of research on graph states
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Algorithms for LU-equivalence
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Algorithms for LU-equivalence

Question

Does there exist an efficient algorithm that decides if two graph states are
LU-equivalent?

Some progress: a quasi-polynomial algorithm.

Theorem (C, Perdrix, 2025)

There exists an algorithm that decides if two graph states are
LU-equivalent with runtime nlog2(n)+O(1).
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The algorithm

G1 G2

local unitaries ?

VX
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LU=LC up to 26 qubits?



31

LU=LC up to 26 qubits?

Conjecture

LU=LC for graph states up to 26 qubits.
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Optimisation of graph state preparation

There are many ways of formalizing the problem of preparing a graph state
optimally:

First CZ gates, then local Clifford1;

CZ gates can be applied between rounds of local Clifford2;

Ancilla qubits are allowed3;

Other implementation-specific operations are allowed, like fusion for
photonic graph states4;

Local unitaries (not just local Clifford) i.e. r -local complementations
are allowed.

1
Kumabe, Mori, Yoshimura, Complexity of graph-state preparation by Clifford circuits, 2025

2
Davies, Jena, Preparing graph states forbidding a vertex-minor, 2025

3
Kumabe, Mori, Yoshimura, Complexity of graph-state preparation by Clifford circuits, 2025

4
Lee, Jeong, Graph-theoretical optimization of fusion-based graph state generation, Quantum, 2023
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Can r-local-complementation help?

Question

Can local unitary gates beyond local Clifford gate (i.e. r -local
complementations) help reduce the edge-count?

More generally:

Question

How much richer is the orbit by r-local complementation compared to the
orbit by local complementation.
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Universality and classical simulation

Question

Which classes of graph states are universal for MBQC? For which classes
of graph states is MBQC classically simulable?

Proposition (Van den Nest, Dür, Vidal, Briegel 2007)

MBQC on graph states with bounded rank-width is classically simulable.

Conjecture (Geelen)

MBQC can be simulated classically for (non-trival) classes of graphs that
are closed under local complementation and vertex deletions.
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Efficient universality of random graph states

Question

Are random graph states efficiently universal?
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Random quantum states are not efficiently universal because their
geometric measure of entanglement is too high.1

The geometric measure of entanglement of random graph states is
too low to use the same argument.2

1
Gross, Flammia, Eisert, Most Quantum States Are Too Entangled To Be Useful As Computational Resources, PRL, 2009

2
Ghosh, Hangleiter, Helsen, Random regular graph states are complex at almost any depth, 2024
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Efficient universality of random bipartite graph states
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With high probability, a cluster state with
√
n qubits can be induced with

local operations.1

1
Cautrès, C., Mhalla, Perdrix, Savin, Thomassé, Vertex-minor universal graphs for generating entangled quantum

subsystems, ICALP 2024
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Thanks

arXiv:2409.20183
arXiv:2502.06566
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