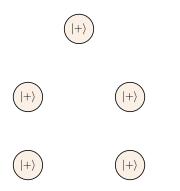
Local equivalences of graph states

Nathan Claudet

Maria Waldrast
Innsbruck-Konstanz-Hannover Meeting on Physics and Philosophy

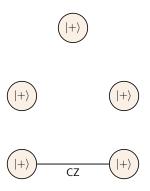
18/09/25

Graph states, local unitary equivalence, local Clifford equivalence & local complementation



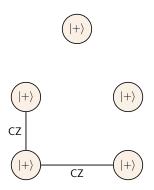
¹Edges do not have a direction.

²No multiples edges and no loops.



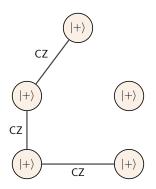
¹Edges do not have a direction.

²No multiples edges and no loops.



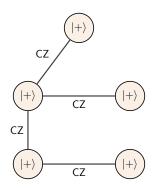
¹Edges do not have a direction.

²No multiples edges and no loops.



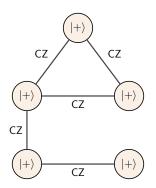
¹Edges do not have a direction.

²No multiples edges and no loops.



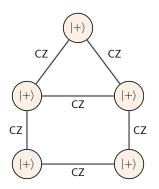
¹Edges do not have a direction.

²No multiples edges and no loops.



¹Edges do not have a direction.

²No multiples edges and no loops.

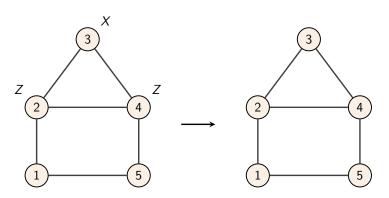


¹Edges do not have a direction.

²No multiples edges and no loops.

Stabilizer states

Graph states are a subfamily of stabilizer states because for each vertex u, applying X on u and applying Z on the neighbours of u leaves the graph state invariant.



4

Graph states are useful entangled resources (MBQC, quantum networks...). \rightarrow It is a fundamental problem to know whether two graph states have the same entanglement, i.e. the graph states are related by SLOCC.

Graph states are useful entangled resources (MBQC, quantum networks...). \rightarrow It is a fundamental problem to know whether two graph states have the same entanglement, i.e. the graph states are related by SLOCC.

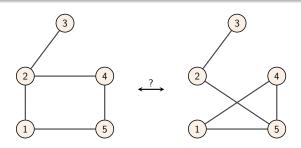
Theorem (Van den Nest, Dehaene, De Moor, 2004)

Two graph states are SLOCC-equivalent iff they are local unitary equivalent (or LU-equivalent), i.e. they are related by a tensor product of single-qubit unitaries.

Graph states are useful entangled resources (MBQC, quantum networks...). \rightarrow It is a fundamental problem to know whether two graph states have the same entanglement, i.e. the graph states are related by SLOCC.

Theorem (Van den Nest, Dehaene, De Moor, 2004)

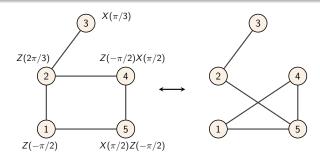
Two graph states are SLOCC-equivalent iff they are local unitary equivalent (or LU-equivalent), i.e. they are related by a tensor product of single-qubit unitaries.



Graph states are useful entangled resources (MBQC, quantum networks...). \rightarrow It is a fundamental problem to know whether two graph states have the same entanglement, i.e. the graph states are related by SLOCC.

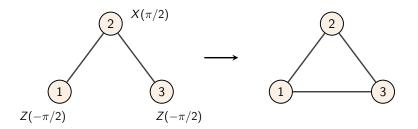
Theorem (Van den Nest, Dehaene, De Moor, 2004)

Two graph states are SLOCC-equivalent iff they are local unitary equivalent (or LU-equivalent), i.e. they are related by a tensor product of single-qubit unitaries.



An easier subproblem: local Clifford equivalence

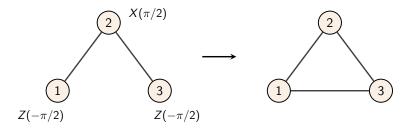
Two graph states are said **local Clifford equivalent** (or LC-equivalent) if they are related by unitaries in the local Clifford group. Single-qubit Clifford group $= \langle H, Z(\pi/2) \rangle$.



6

An easier subproblem: local Clifford equivalence

Two graph states are said **local Clifford equivalent** (or LC-equivalent) if they are related by unitaries in the local Clifford group. Single-qubit Clifford group $= \langle H, Z(\pi/2) \rangle$.

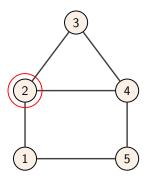


Theorem (Van den Nest, Dehaene, De Moor, 2004)

Two graph states are LC-equivalent iff the two corresponding graphs are related by **local complementations**.

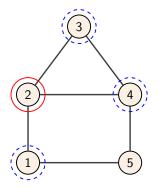
Definition (Kotzig, 1966)

A local complementation on a vertex u consists in complementing the (open) neighbourhood of u.



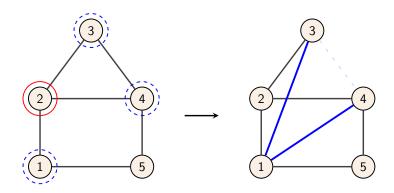
Definition (Kotzig, 1966)

A local complementation on a vertex u consists in complementing the (open) neighbourhood of u.



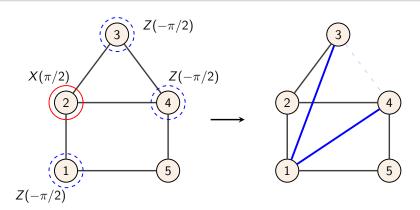
Definition (Kotzig, 1966)

A local complementation on a vertex u consists in complementing the (open) neighbourhood of u.



Definition (Kotzig, 1966)

A local complementation on a vertex u consists in complementing the (open) neighbourhood of u.



7

Algorithmic aspect of local Clifford equivalence

Proposition (Bouchet, 1991)

There exists an efficient algorithm to decide if two graphs are related by local complementations.

ightarrow algorithm to decide if two graph states are LC-equivalent.

Quick history of the LU=LC conjecture

The LU=LC conjecture

Formulated in the early 2000's.

Conjecture

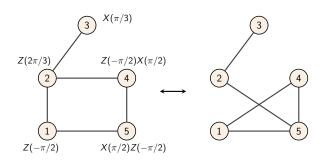
LU=LC i.e. if two graph states are LU-equivalent (local unitaries) then they are LC-equivalent (local Clifford).

The LU=LC conjecture

Formulated in the early 2000's.

Conjecture

LU=LC i.e. if two graph states are LU-equivalent (local unitaries) then they are LC-equivalent (local Clifford).



The LU=LC conjecture

Formulated in the early 2000's.

Conjecture

LU=LC i.e. if two graph states are LU-equivalent (local unitaries) then they are LC-equivalent (local Clifford).

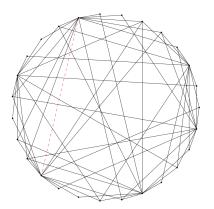


The LU=LC conjecture is false

 $LU \neq LC, \ i.e.$ local unitary equivalence and local Clifford equivalence do ${\bf not}$ coincide.

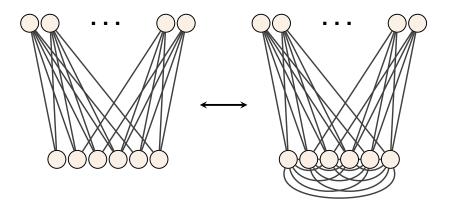
The LU=LC conjecture is false

 $LU \neq LC$, i.e. local unitary equivalence and local Clifford equivalence do **not** coincide. \rightarrow 27-qubit pair of graph states that are LU-equivalent but not LC-equivalent (Ji et al. 2008).



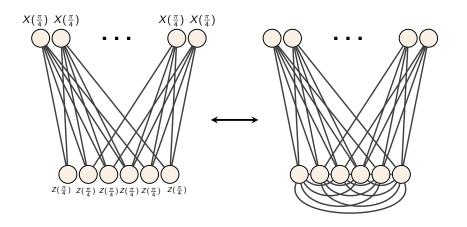
Another look at the 27-vertex counterexample

The 27-vertex counterexample is LC-equivalent to a prettier pair of graphs (Tsimakuridze, Gühne, 2017).



Another look at the 27-vertex counterexample

The 27-vertex counterexample is LC-equivalent to a prettier pair of graphs (Tsimakuridze, Gühne, 2017).



Proposition (Sarvepalli, Raussendorf, 2010)

There exist infinitely many counterexamples to the LU=LC conjecture.

Proposition (Sarvepalli, Raussendorf, 2010)

There exist infinitely many counterexamples to the LU=LC conjecture.

Some other families of graph states for which LU=LC i.e. local complementation captures local unitary equivalence, have been discovered:

Proposition (Sarvepalli, Raussendorf, 2010)

There exist infinitely many counterexamples to the LU=LC conjecture.

Some other families of graph states for which LU=LC i.e. local complementation captures local unitary equivalence, have been discovered:

Graph states over at most 8 qubits (Cabello et al. 2009)

Proposition (Sarvepalli, Raussendorf, 2010)

There exist infinitely many counterexamples to the LU=LC conjecture.

Some other families of graph states for which LU=LC i.e. local complementation captures local unitary equivalence, have been discovered:

- Graph states over at most 8 qubits (Cabello et al. 2009)
- Large enough cluster states (Sarvepalli, Raussendorf, 2010)

Proposition (Sarvepalli, Raussendorf, 2010)

There exist infinitely many counterexamples to the LU=LC conjecture.

Some other families of graph states for which LU=LC i.e. local complementation captures local unitary equivalence, have been discovered:

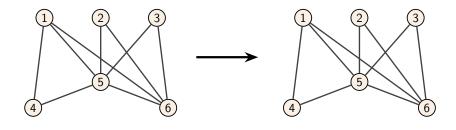
- Graph states over at most 8 qubits (Cabello et al. 2009)
- Large enough cluster states (Sarvepalli, Raussendorf, 2010)

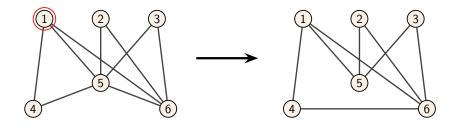
But what about LU-equivalence for **any** graph? Can we construct a graphical characterisation?

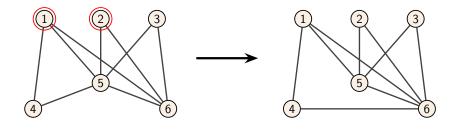
Generalizing local complementation to capture local unitary equivalence

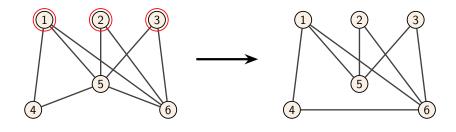
A refinement of idempotent local complementations

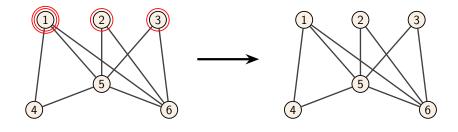
A sequence of local complementations may leave the graph invariant.

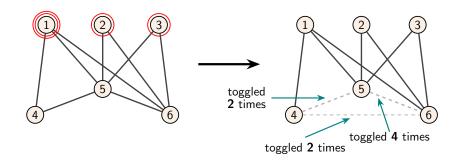




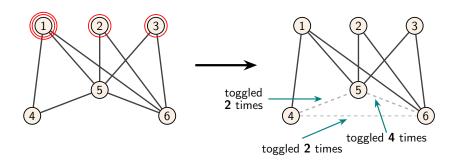






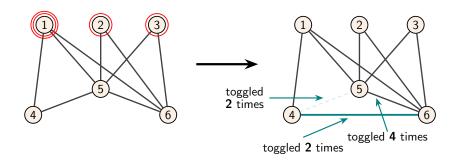


A sequence of local complementations may leave the graph invariant.



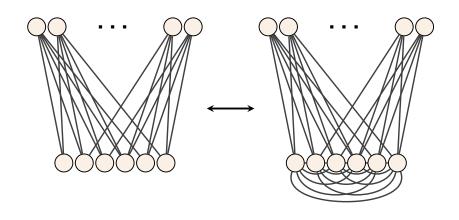
A **2-local complementation** consists in toggling every edge that was toggled 2 mod 4 times by the idempotent local complementations. (There are also some additional conditions on the edges for the 2-local complementation the be valid.)

A sequence of local complementations may leave the graph invariant.

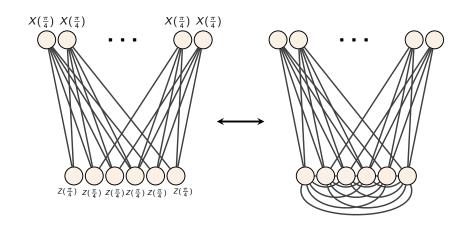


A **2-local complementation** consists in toggling every edge that was toggled 2 mod 4 times by the idempotent local complementations. (There are also some additional conditions on the edges for the 2-local complementation the be valid.)

Example of a 2-local complementation



Example of a 2-local complementation



r-local complementation

- 3-local complementation is a refinement of idempotent 2-local complementation, and so on...
- \rightarrow Infinite family of graphical operations parametrised by an integer r:

r-local complementations

1-local complementation = local complementation.

Recall: LC-equivalent \Leftrightarrow related by local unitaries generated by finitely many H and $Z(\pi/2)$.

Define: \mathbf{LC}_r -equivalent \Leftrightarrow related by local unitaries generated by finitely many H and $Z(\pi/2^r)$.

Recall: LC-equivalent \Leftrightarrow related by local unitaries generated by finitely many H and $Z(\pi/2)$.

Define: **LC**_r-equivalent \Leftrightarrow related by local unitaries generated by finitely many H and $Z(\pi/2^r)$.

 \Leftrightarrow related by local unitaries in the level r+1 of the Clifford hierarchy.

Recall: LC-equivalent \Leftrightarrow related by local unitaries generated by finitely many H and $Z(\pi/2)$.

Define: **LC**_r-equivalent \Leftrightarrow related by local unitaries generated by finitely many H and $Z(\pi/2^r)$.

 \Leftrightarrow related by local unitaries in the level r+1 of the Clifford hierarchy.

Theorem (C, Perdrix, 2025)

Two graph states are LC_r -equivalent iff the two corresponding graphs are related by r-local complementations.

For r = 1, we recover local Clifford \Leftrightarrow local complementation.

Recall: LC-equivalent \Leftrightarrow related by local unitaries generated by finitely many H and $Z(\pi/2)$.

Define: **LC**_r-equivalent \Leftrightarrow related by local unitaries generated by finitely many H and $Z(\pi/2^r)$.

 \Leftrightarrow related by local unitaries in the level r+1 of the Clifford hierarchy.

Theorem (C, Perdrix, 2025)

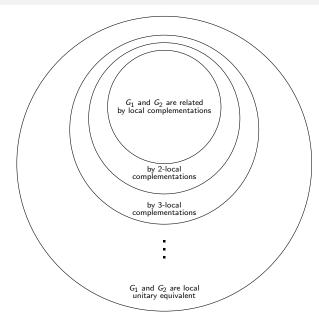
Two graph states are LC_r -equivalent iff the two corresponding graphs are related by r-local complementations.

For r = 1, we recover local Clifford \Leftrightarrow local complementation.

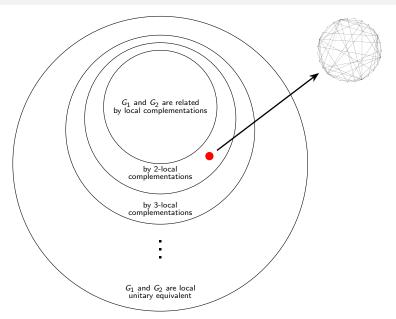
Theorem (C, Perdrix, 2025)

Two graph states are LU-equivalent iff the two corresponding graphs are related by r-local complementations for some r.

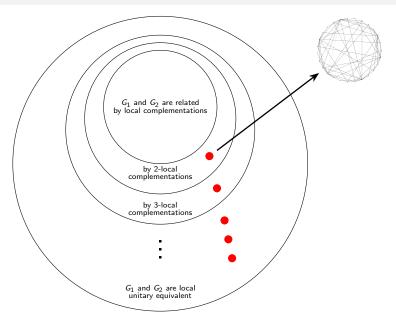
An infinite hierarchy of local equivalences



An infinite hierarchy of local equivalences



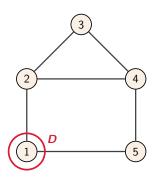
An infinite hierarchy of local equivalences

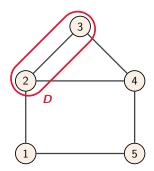


Proof that r-local complementation captures LU-equivalence

Definition (Odd neighbourhood)

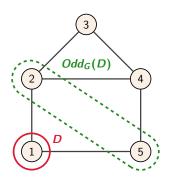
Given a set of vertices D, the **odd neighbourhood** $Odd_G(D)$ of D is the set of vertices that are neighbours of an odd number of vertices in D.

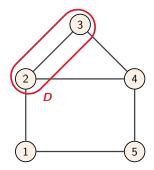




Definition (Odd neighbourhood)

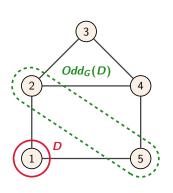
Given a set of vertices D, the **odd neighbourhood** $Odd_G(D)$ of D is the set of vertices that are neighbours of an odd number of vertices in D.

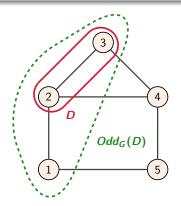




Definition (Odd neighbourhood)

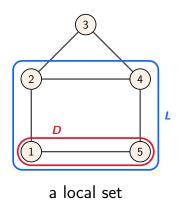
Given a set of vertices D, the **odd neighbourhood** $Odd_G(D)$ of D is the set of vertices that are neighbours of an odd number of vertices in D.





Definition

A **local set** is a non-empty vertex set of the form $L = D \cup Odd_G(D)$. A **minimal local set** is a local set that is minimal by inclusion (i.e it doesn't strictly contain another local set).



3 2 4 L 5

a minimal local set

Proposition

(Minimal) local sets are LU-invariant, i.e. two LU-equivalent graph states have the same minimal local sets.

Proposition

(Minimal) local sets are LU-invariant, i.e. two LU-equivalent graph states have the same minimal local sets.

Local sets \Leftrightarrow stabilizers of the graph state : $X_D Z_{Odd(D)}$.

Proposition

(Minimal) local sets are LU-invariant, i.e. two LU-equivalent graph states have the same minimal local sets.

Local sets \Leftrightarrow stabilizers of the graph state : $X_D Z_{Odd(D)}$.

Minimal local sets \Leftrightarrow stabilizers of minimal support.

Proposition

(Minimal) local sets are LU-invariant, i.e. two LU-equivalent graph states have the same minimal local sets.

Local sets \Leftrightarrow stabilizers of the graph state : $X_D Z_{Odd(D)}$.

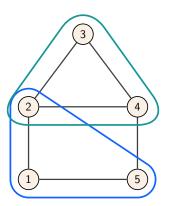
Minimal local sets ⇔ stabilizers of minimal support.

Minimal local sets carry information on the possible local unitaries that maps graph states to other graph states.

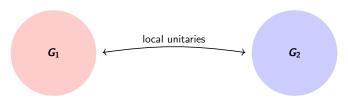
Minimal local sets cover any graph

Theorem (C, Perdrix, 2024)

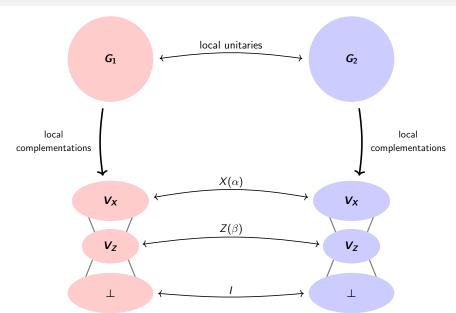
Each vertex of a graph is covered by at least one minimal local set.



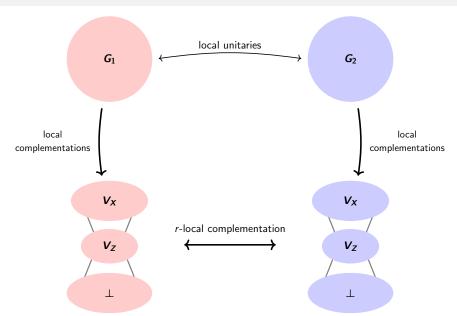
Proof sketch: Standard form for graph states



Proof sketch: Standard form for graph states



Proof sketch: Standard form for graph states



Some areas of research on graph states

Algorithms for LU-equivalence

Algorithms for LU-equivalence

Question

Does there exist an efficient algorithm that decides if two graph states are LU-equivalent?

Algorithms for LU-equivalence

Question

Does there exist an efficient algorithm that decides if two graph states are LU-equivalent?

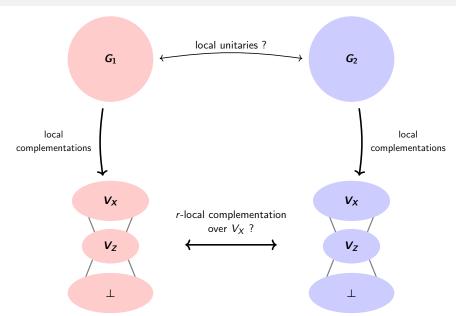
Some progress: a quasi-polynomial algorithm.

Theorem (C, Perdrix, 2025)

There exists an algorithm that decides if two graph states are LU-equivalent with runtime $n^{\log_2(n)+O(1)}$.

The algorithm

The algorithm



LU=LC up to 26 qubits?

LU=LC up to 26 qubits?

Conjecture

LU=LC for graph states up to 26 qubits.

LU=LC up to 26 qubits?

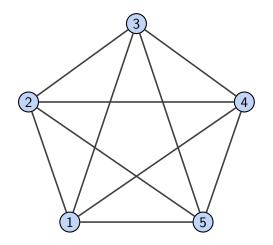
Conjecture

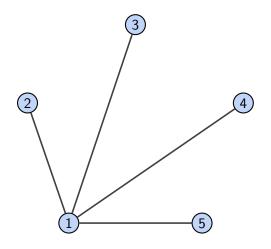
LU=LC for graph states up to 26 qubits.

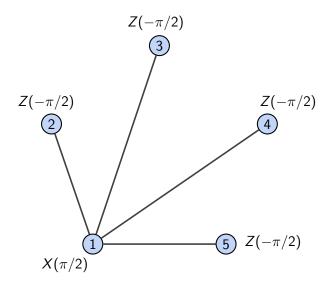
Some progress:

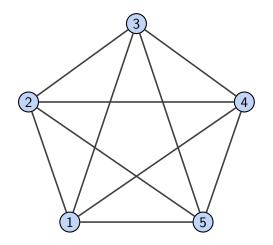
Proposition

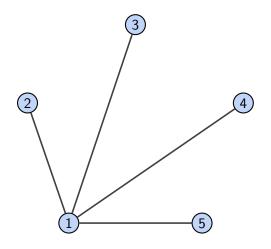
LU=LC for graph states up to 19 qubits.











¹Kumabe, Mori, Yoshimura, Complexity of graph-state preparation by Clifford circuits, 2025

²Davies, Jena, Preparing graph states forbidding a vertex-minor, 2025

³Kumabe, Mori, Yoshimura, Complexity of graph-state preparation by Clifford circuits, 2025

 $^{^{4}}$ Lee, Jeong, Graph-theoretical optimization of fusion-based graph state generation, Quantum, 2023

There are many ways of formalizing the problem of preparing a graph state optimally:

• First CZ gates, then local Clifford¹;

¹Kumabe, Mori, Yoshimura, Complexity of graph-state preparation by Clifford circuits, 2025

²Davies, Jena, Preparing graph states forbidding a vertex-minor, 2025

 $^{^3}$ Kumabe, Mori, Yoshimura, Complexity of graph-state preparation by Clifford circuits, 2025

 $^{^{4}}$ Lee, Jeong, Graph-theoretical optimization of fusion-based graph state generation, Quantum, 2023

- First CZ gates, then local Clifford¹;
- CZ gates can be applied between rounds of local Clifford²;

¹Kumabe, Mori, Yoshimura, Complexity of graph-state preparation by Clifford circuits, 2025

²Davies, Jena, Preparing graph states forbidding a vertex-minor, 2025

³Kumabe, Mori, Yoshimura, Complexity of graph-state preparation by Clifford circuits, 2025

⁴Lee, Jeong, Graph-theoretical optimization of fusion-based graph state generation, Quantum, 2023

- First CZ gates, then local Clifford¹;
- CZ gates can be applied between rounds of local Clifford²;
- Ancilla qubits are allowed³;

¹Kumabe, Mori, Yoshimura, Complexity of graph-state preparation by Clifford circuits, 2025

²Davies, Jena, Preparing graph states forbidding a vertex-minor, 2025

³Kumabe, Mori, Yoshimura, Complexity of graph-state preparation by Clifford circuits, 2025

⁴ Lee, Jeong, Graph-theoretical optimization of fusion-based graph state generation, Quantum, 2023

- First CZ gates, then local Clifford¹;
- CZ gates can be applied between rounds of local Clifford²;
- Ancilla qubits are allowed³;
- Other implementation-specific operations are allowed, like fusion for photonic graph states⁴;

¹Kumabe, Mori, Yoshimura, Complexity of graph-state preparation by Clifford circuits, 2025

²Davies, Jena, Preparing graph states forbidding a vertex-minor, 2025

³Kumabe, Mori, Yoshimura, Complexity of graph-state preparation by Clifford circuits, 2025

⁴Lee, Jeong, Graph-theoretical optimization of fusion-based graph state generation, Quantum, 2023

- First CZ gates, then local Clifford¹;
- CZ gates can be applied between rounds of local Clifford²;
- Ancilla qubits are allowed³;
- Other implementation-specific operations are allowed, like fusion for photonic graph states⁴;
- Local unitaries (not just local Clifford) i.e. *r*-local complementations are allowed.

¹Kumabe, Mori, Yoshimura, Complexity of graph-state preparation by Clifford circuits, 2025

²Davies, Jena, Preparing graph states forbidding a vertex-minor, 2025

³Kumabe, Mori, Yoshimura, Complexity of graph-state preparation by Clifford circuits, 2025

⁴Lee, Jeong, Graph-theoretical optimization of fusion-based graph state generation, Quantum, 2023

Can r-local-complementation help?

Question

Can local unitary gates beyond local Clifford gate (i.e. r-local complementations) help reduce the edge-count?

Can r-local-complementation help?

Question

Can local unitary gates beyond local Clifford gate (i.e. r-local complementations) help reduce the edge-count?

More generally:

Question

How much richer is the orbit by r-local complementation compared to the orbit by local complementation.

Question

Which classes of graph states are universal for MBQC? For which classes of graph states is MBQC classically simulable?

Question

Which classes of graph states are universal for MBQC? For which classes of graph states is MBQC classically simulable?

Proposition (Van den Nest, Dür, Vidal, Briegel 2007)

MBQC on graph states with bounded rank-width is classically simulable.

Question

Which classes of graph states are universal for MBQC? For which classes of graph states is MBQC classically simulable?

Proposition (Van den Nest, Dür, Vidal, Briegel 2007)

MBQC on graph states with bounded rank-width is classically simulable.

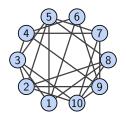
Conjecture (Geelen)

MBQC can be simulated classically for (non-trival) classes of graphs that are closed under local complementation and vertex deletions.

Efficient universality of random graph states

Question

Are random graph states efficiently universal?



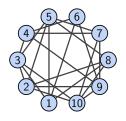
¹ Gross, Flammia, Eisert, Most Quantum States Are Too Entangled To Be Useful As Computational Resources, PRL, 2009

²Ghosh, Hangleiter, Helsen, Random regular graph states are complex at almost any depth, 2024

Efficient universality of random graph states

Question

Are random graph states efficiently universal?



 Random quantum states are not efficiently universal because their geometric measure of entanglement is too high.¹

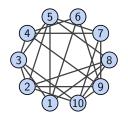
¹Gross, Flammia, Eisert, Most Quantum States Are Too Entangled To Be Useful As Computational Resources, PRL, 2009

²Ghosh, Hangleiter, Helsen, Random regular graph states are complex at almost any depth, 2024

Efficient universality of random graph states

Question

Are random graph states efficiently universal?

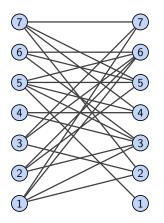


- Random quantum states are not efficiently universal because their geometric measure of entanglement is too high.¹
- The geometric measure of entanglement of random graph states is too low to use the same argument.²

¹Gross, Flammia, Eisert, Most Quantum States Are Too Entangled To Be Useful As Computational Resources, PRL, 2009

²Ghosh, Hangleiter, Helsen, Random regular graph states are complex at almost any depth, 2024

Efficient universality of random bipartite graph states

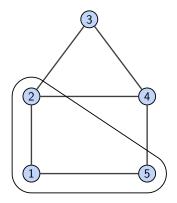


With high probability, a cluster state with \sqrt{n} qubits can be induced with local operations.¹

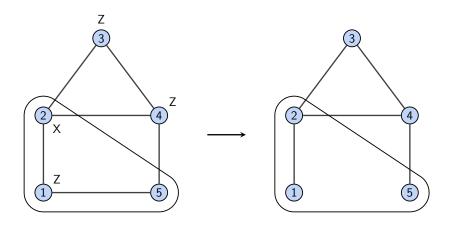
¹Cautrès, C., Mhalla, Perdrix, Savin, Thomassé, Vertex-minor universal graphs for generating entangled quantum subsystems. ICALP 2024

Local equivalences of hypergraph states

Local equivalences of hypergraph states



Local equivalences of hypergraph states



Thanks

arXiv:2409.20183

arXiv:2502.06566