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Graph states are a subfamilly of stabilizer states because for each vertex u,
applying X on u and applying Z on the neighbours of u leaves the graph
state invariant.
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Two graph states are said local Clifford equivalent (or LC-equivalent) if
they are related by unitaries in the local Clifford group.
Single-qubit Clifford group = < H, Z(7/2) >.
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An easier subproblem: local Clifford equivalence

Two graph states are said local Clifford equivalent (or LC-equivalent) if
they are related by unitaries in the local Clifford group.
Single-qubit Clifford group = < H, Z(7/2) >.
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Two graph states are LC-equivalent iff the two corresponding graphs are
related by local complementations.
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Algorithmic aspect of local Clifford equivalence

There exists an efficient algorithm to decide if two graphs are related by
local complementations.

— algorithm to decide if two graph states are LC-equivalent.






The LU=LC conjecture

Formulated in the early 2000's.

LU=LC i.e. if two graph states are LU-equivalent (local unitaries) then
they are LC-equivalent (local Clifford).
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The LU=LC conjecture

Formulated in the early 2000's.

LU=LC i.e. if two graph states are LU-equivalent (local unitaries) then
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The LU=LC conjecture is false

LU # LG, i.e. local unitary equivalence and local Clifford equivalence do
not coincide.

11



The LU=LC conjecture is false

LU # LC, i.e. local unitary equivalence and local Clifford equivalence do
not coincide.— 27-qubit pair of graph states that are LU-equivalent but
not LC-equivalent (Ji et al. 2008).
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Another look at the 27-vertex counterexample




Another look at the 27-vertex counterexample

The 27-vertex counterexample is LC-equivalent to a prettier pair of graphs
(Tsimakuridze, Giihne, 2017).
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Other results after LU # LC

There exist infinitely many counterexamples to the LU=LC conjecture. I
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Other results after LU # LC

There exist infinitely many counterexamples to the LU=LC conjecture. I

Some other families of graph states for which LU=LC i.e. local
complementation captures local unitary equivalence, have been discovered:

o Graph states over at most 8 qubits (Cabello et al. 2009)

o Large enough cluster states (Sarvepalli, Raussendorf, 2010)

But what about LU-equivalence for any graph? Can we construct a
graphical characterisation?

13



14



A refinement of idempotent local complementations

A sequence of local complementations may leave the graph invariant.
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A 2-local complementation consists in toggling every edge that was
toggled 2 mod 4 times by the idempotent local complementations.
(There are also some additional conditions on the edges for the 2-local
complementation the be valid.)
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A refinement of idempotent local complementations

A sequence of local complementations may leave the graph invariant.

toggled
2 times

6

/toggled\4 times

toggled 2 times

A 2-local complementation consists in toggling every edge that was
toggled 2 mod 4 times by the idempotent local complementations.
(There are also some additional conditions on the edges for the 2-local
complementation the be valid.)
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Example of a 2-local complementation




r-local complementation

3-local complementation is a refinement of idempotent 2-local
complementation, and so on...

— Infinite family of graphical operations parametrised by an integer r:

r-local complementations

1-local complementation = local complementation.
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Graphical characterization of entanglement

Recall: LC-equivalent < related by local unitaries generated by finitely
many H and Z(7/2).

Define: LC,-equivalent < related by local unitaries generated by finitely
many H and Z(7/2").
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Graphical characterization of entanglement

Recall: LC-equivalent < related by local unitaries generated by finitely
many H and Z(7/2).

Define: LC,-equivalent < related by local unitaries generated by finitely
many H and Z(7/2").

& related by local unitaries in the level r + 1 of the Clifford hierarchy.

Two graph states are LC,-equivalent iff the two corresponding graphs are
related by r-local complementations.

For r = 1, we recover local Clifford < local complementation.

Two graph states are LU-equivalent iff the two corresponding graphs are
related by r-local complementations for some r.

18



An infinite hierarchy of local equivalences

Gy and Gy are related
by local complementations

by 2-local
complementations

b?/ 3-local
complementations

Gy and Gy are local
unitary equivalent
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Minimal local sets

Given a set of vertices D, the odd neighbourhood Oddg(D) of D is the
set of vertices that are neighbours of an odd number of vertices in D.
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Minimal local sets

A local set is a non-empty vertex set of the form L = D U Oddg(D).
A minimal local set is a local set that is minimal by inclusion (i.e it
doesn't strictly contain another local set).

a local set a minimal local set
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Minimal local set

(Minimal) local sets are LU-invariant, i.e. two LU-equivalent graph states
have the same minimal local sets.
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Minimal local set

(Minimal) local sets are LU-invariant, i.e. two LU-equivalent graph states
have the same minimal local sets.

Local sets < stabilizers of the graph state : XpZogq(p)-
Minimal local sets < stabilizers of minimal support.

Minimal local sets carry information on the possible local unitaries that
maps graph states to other graph states.
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Minimal local sets cover any graph

Each vertex of a graph is covered by at least one minimal local set. I
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Proof sketch: Standard form for graph states

local unitaries

—
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Proof sketch: Standard form for graph states

local unitaries

G - G,
local local
complementations complementations
X(e)
Vx —_ Vx
A — 2(8) \_/
Vz VZ
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Proof sketch: Standard form for graph states

local unitaries

G — G,
local local
complementations complementations
Vx Vx
\ / r-local complementation \ /
Vz — Vz
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Algorithms for LU-equivalence

Does there exist an efficient algorithm that decides if two graph states are
LU-equivalent?
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Algorithms for LU-equivalence

Does there exist an efficient algorithm that decides if two graph states are
LU-equivalent?

Some progress: a quasi-polynomial algorithm.

There exists an algorithm that decides if two graph states are
LU-equivalent with runtime n'°g(n+0(1),
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The algorithm

local unitaries ?

—
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The algorithm

local unitaries ?

G — G,

local local
complementations complementations

Vx Vx
r-local complementation

\ / over Vx ? \ /
Vz — Vz
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LU=LC up to 26 qubits?

LU=LC for graph states up to 26 qubits. |
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LU=LC up to 26 qubits?

LU=LC for graph states up to 26 qubits.

Some progress:

LU=LC for graph states up to 19 qubits. I
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Z(=m/2)

X(m/2)
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Optimisation of graph state preparation

There are many ways of formalizing the problem of preparing a graph state
optimally:

Kumabe, Mori, Yoshimura, Complexity of graph-state preparation by Clifford circuits, 2025

Davies, Jena, Preparing graph states forbidding a vertex-minor, 2025

Kumabe, Mori, Yoshimura, Complexity of graph-state preparation by Clifford circuits, 2025

Lee, Jeong, Graph-theoretical optimization of fusion-based graph state generation, Quantum, 2023 34
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There are many ways of formalizing the problem of preparing a graph state
optimally:

o First CZ gates, then local Clifford?;

o CZ gates can be applied between rounds of local Clifford?;

o Ancilla qubits are allowed3;

o Other implementation-specific operations are allowed, like fusion for
photonic graph states?;

o Local unitaries (not just local Clifford) i.e. r-local complementations
are allowed.

lKumabe, Mori, Yoshimura, Complexity of graph-state preparation by Clifford circuits, 2025

2Davies, Jena, Preparing graph states forbidding a vertex-minor, 2025

ZKumabe, Mori, Yoshimura, Complexity of graph-state preparation by Clifford circuits, 2025

Lee, Jeong, Graph-theoretical optimization of fusion-based graph state generation, Quantum, 2023 34



Can r-local-complementation help?

Can local unitary gates beyond local Clifford gate (i.e. r-local
complementations) help reduce the edge-count?
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Can r-local-complementation help?

Can local unitary gates beyond local Clifford gate (i.e. r-local
complementations) help reduce the edge-count?

More generally:

How much richer is the orbit by r-local complementation compared to the
orbit by local complementation.
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Universality and classical simulation

Which classes of graph states are universal for MBQC? For which classes
of graph states is MBQC classically simulable?
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Universality and classical simulation

Which classes of graph states are universal for MBQC? For which classes
of graph states is MBQC classically simulable?

MBQC on graph states with bounded rank-width is classically simulable. I

MBQC can be simulated classically for (non-trival) classes of graphs that
are closed under local complementation and vertex deletions.
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Efficient universality of random graph states

Are random graph states efficiently universal? I

1Gross, Flammia, Eisert, Most Quantum States Are Too Entangled To Be Useful As Computational Resources, PRL, 2009
Ghosh, Hangleiter, Helsen, Random regular graph states are complex at almost any depth, 2024 38
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Efficient universality of random graph states

Are random graph states efficiently universal?

o Random quantum states are not efficiently universal because their
geometric measure of entanglement is too high.!

o The geometric measure of entanglement of random graph states is
too low to use the same argument.?

1Gross, Flammia, Eisert, Most Quantum States Are Too Entangled To Be Useful As Computational Resources, PRL, 2009

2Ghosh, Hangleiter, Helsen, Random regular graph states are complex at almost any depth, 2024 38



Efficient universality of random bipartite graph states

With high probability, a cluster state with y/n qubits can be induced with
local operations.!

Cautres, C., Mhalla, Perdrix, Savin, Thomassé, Vertex-minor universal graphs for generating entangled quantum
subsystems, ICALP 2024 39
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