

A conjecture linking graph theory and efficient simulation of measurement-based quantum computation

Nathan Claudet

Séminaire Mocqua
Loria, Nancy

12/02/2026

Quantum computational power

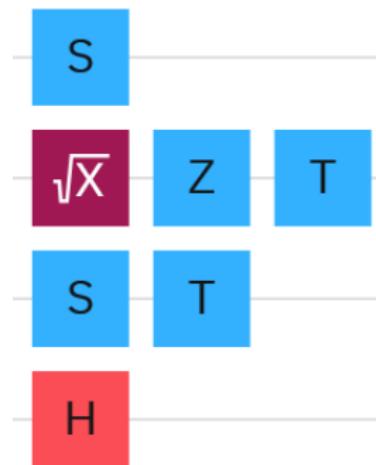
If quantum computers are more powerful than classical computers, exactly what features make them more powerful?

Quantum computational power

If quantum computers are more powerful than classical computers, exactly what features make them more powerful?

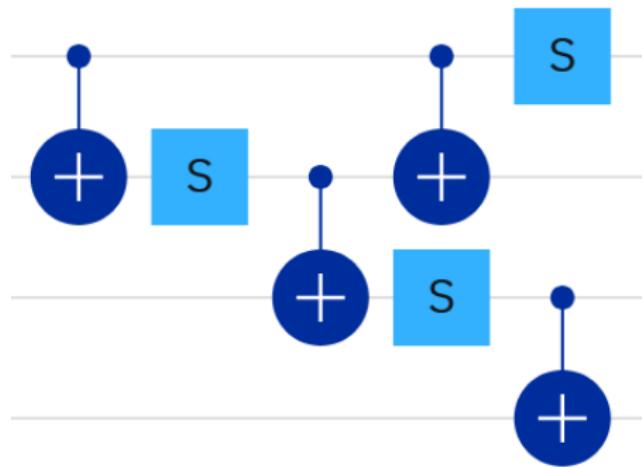
Related question: **when do quantum computers have the same computational power as classical computers?**

Quantum circuits with only local gates



No entanglement \rightarrow The quantum computation can be efficiently simulated on a classical computer.

Quantum circuits with only Clifford gates



Theorem (Gottesman-Knill, 1998)

A quantum computation consisting only of Clifford gates can be efficiently simulated on a classical computer.

Sources of computational power

Two potential sources of quantum computational power:

- 1) Entanglement;
- 2) non-Clifford operations.

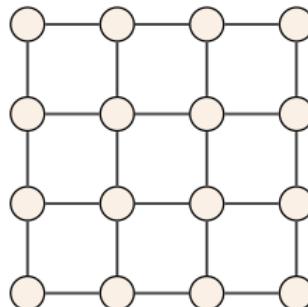
Measurement-based quantum computation

The idea behind **measurement-based quantum computation** is to separate the two potential sources of quantum computational power.

Measurement-based quantum computation

The idea behind **measurement-based quantum computation** is to separate the two potential sources of quantum computational power.

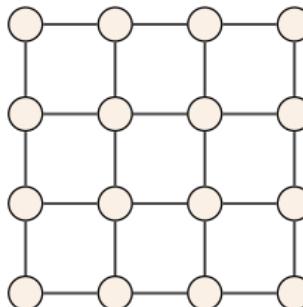
- 1) Prepare a **graph state** with only CZ gates (Clifford gates);



Measurement-based quantum computation

The idea behind **measurement-based quantum computation** is to separate the two potential sources of quantum computational power.

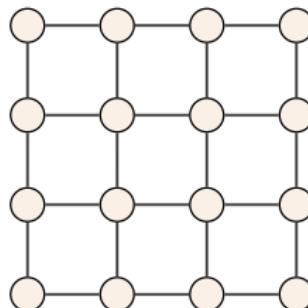
- 1) Prepare a **graph state** with only CZ gates (Clifford gates);
- 2) **Measure** qubits in some ways that may depend on the previous measurements (no entanglement added).



Universality of measurement-based quantum computation

Theorem (Briegel, Raussendorf, 2001)

Measurement-based quantum computation on the grid graph states has the same computational power as quantum circuits.



We say that the grid graph states (also called the 2D cluster states) are **universal resources**.

Reformulation of the question

In measurement-based quantum computation, the question

"What features make quantum computers powerful?"

becomes

"Which graph states are universal resources?"

Reformulation of the question

In measurement-based quantum computation, the question

"What features make quantum computers powerful?"

becomes

"Which graph states are universal resources?"

Alternatively:

"For which graph states is measurement-based quantum computation efficiently classically simulable?"

The simulation conjecture of Geelen

Conjecture (The simulation conjecture)

*If we restrict ourselves to preparing **graph states** from any **proper vertex-minor-closed class** of graphs, then measurement-based quantum computation is **efficiently classically simulable**.*

Graph states and vertex-minors

Graph states

A graph state is a quantum state represented by a graph. The vertices represent the qubits and the edges represent entanglement.

$$|+\rangle$$

$$(3)$$
$$|+\rangle$$

$$(2)$$

$$(4)$$

$$|+\rangle$$
$$|+\rangle$$

$$(1)$$

$$(5)$$

$$|+\rangle$$

Graph states

A graph state is a quantum state represented by a graph. The vertices represent the qubits and the edges represent entanglement.

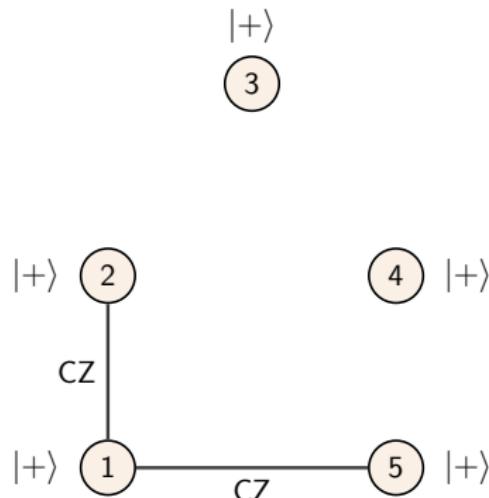
$|+\rangle$
3

$|+\rangle$ 2 4 $|+\rangle$

$|+\rangle$ 1 CZ 5 $|+\rangle$

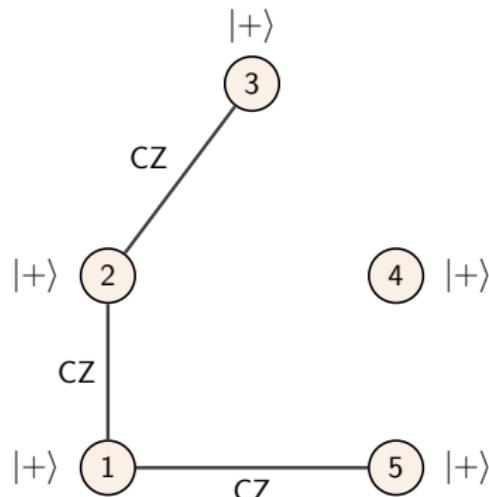
Graph states

A graph state is a quantum state represented by a graph. The vertices represent the qubits and the edges represent entanglement.



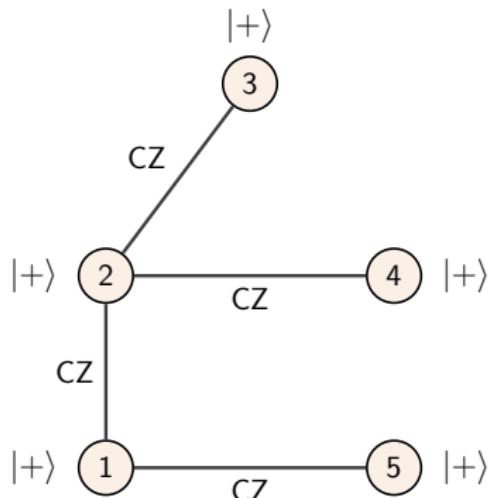
Graph states

A graph state is a quantum state represented by a graph. The vertices represent the qubits and the edges represent entanglement.



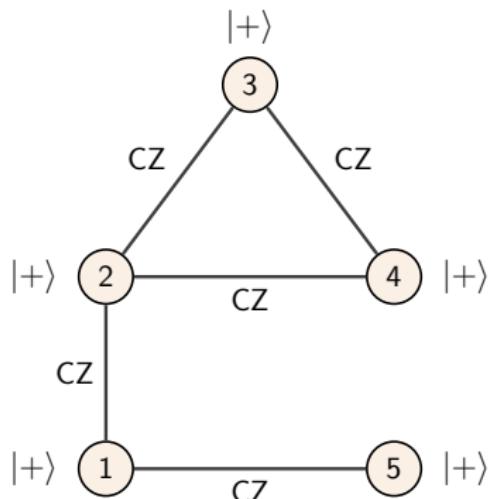
Graph states

A graph state is a quantum state represented by a graph. The vertices represent the qubits and the edges represent entanglement.



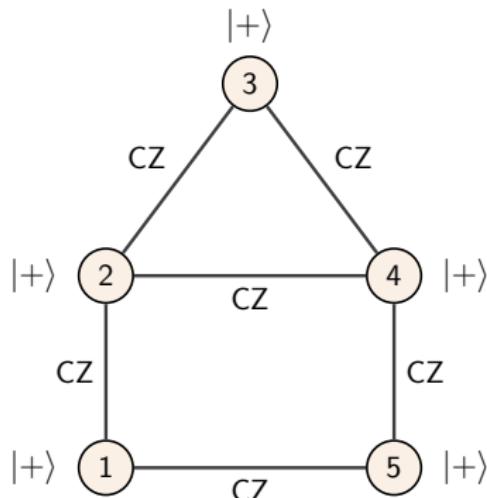
Graph states

A graph state is a quantum state represented by a graph. The vertices represent the qubits and the edges represent entanglement.



Graph states

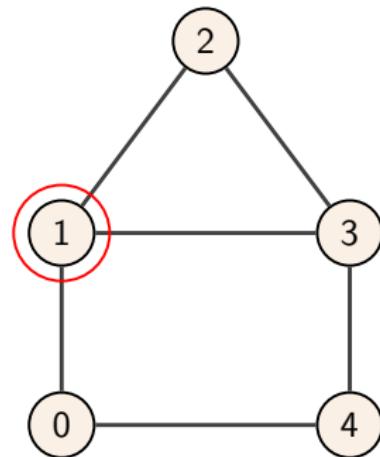
A graph state is a quantum state represented by a graph. The vertices represent the qubits and the edges represent entanglement.



Local complementation

Definition

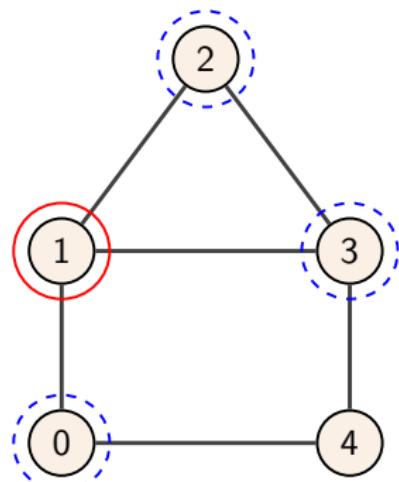
A local complementation on a vertex u consists in complementing the (open) neighborhood of u .



Local complementation

Definition

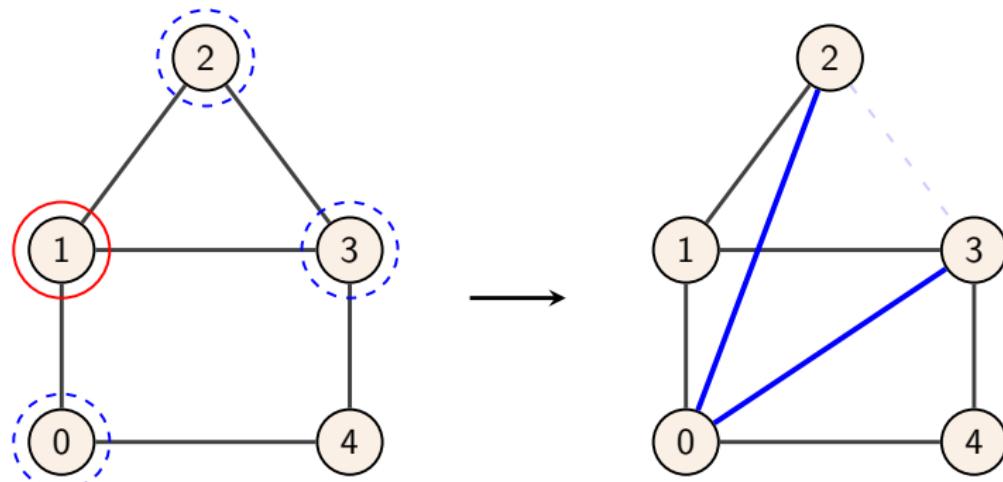
A local complementation on a vertex u consists in complementing the (open) neighborhood of u .



Local complementation

Definition

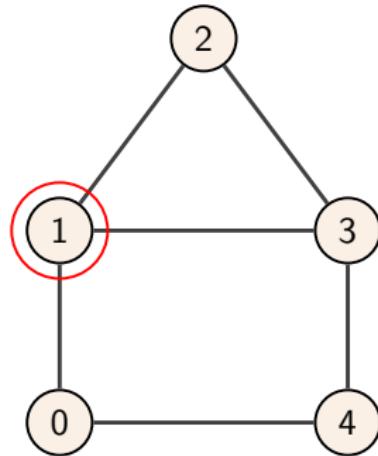
A local complementation on a vertex u consists in complementing the (open) neighborhood of u .



Vertex deletion

Definition

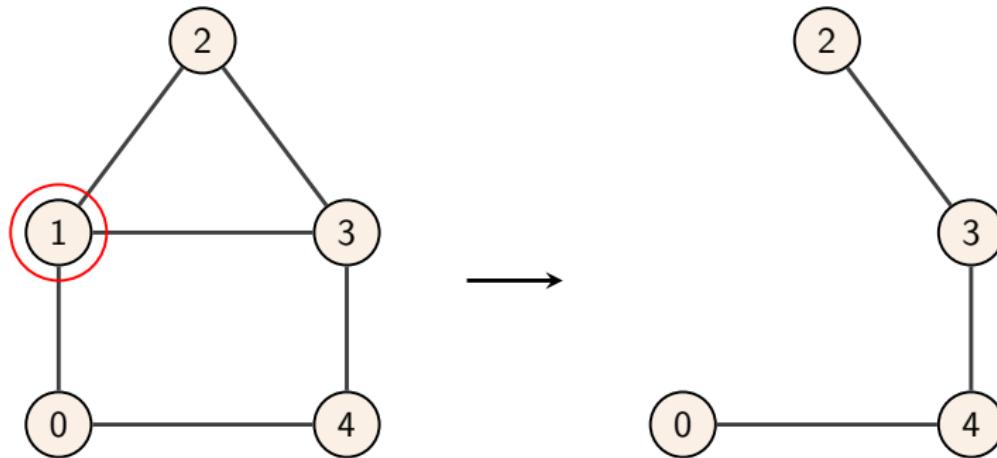
A vertex deletion on a vertex u consists removing u and its adjacent edges from the graph.



Vertex deletion

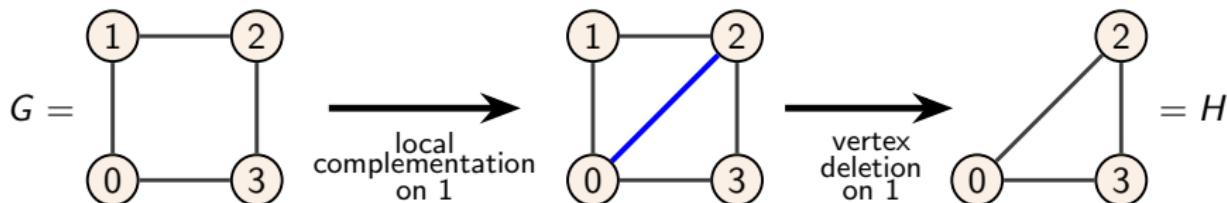
Definition

A vertex deletion on a vertex u consists removing u and its adjacent edges from the graph.



Definition (Vertex-minor)

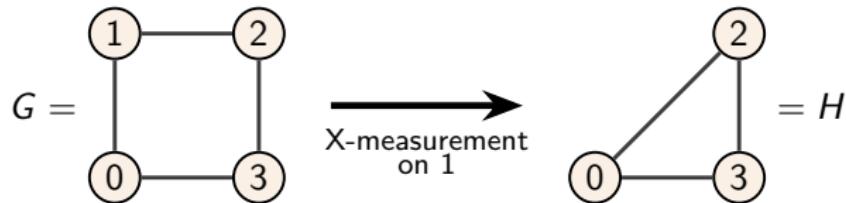
H is a vertex-minor of G if H can be obtained from G by means of local complementations + vertex deletions.



Vertex-minor = local Clifford

Theorem (Dahlberg, Wehner, 2018)

If H is a vertex-minor of G then $|H\rangle$ can be obtained from $|G\rangle$ by local Clifford gates, local Pauli measurements, and classical communication.



Vertex-minor closed class of graphs

Definition

A class of graph \mathcal{G} is **vertex-minor closed** if any vertex-minor of some $G \in \mathcal{G}$ is also in \mathcal{G} .

Vertex-minor closed class of graphs

Definition

A class of graph \mathcal{G} is **vertex-minor closed** if any vertex-minor of some $G \in \mathcal{G}$ is also in \mathcal{G} .

Conjecture (The well-quasi-order conjecture)

*Any vertex-minor closed class of graphs can be characterized by a **finite** set of forbidden vertex-minors.*

Vertex-minor closed class of graphs

Definition

A class of graph \mathcal{G} is **vertex-minor closed** if any vertex-minor of some $G \in \mathcal{G}$ is also in \mathcal{G} .

Conjecture (The well-quasi-order conjecture)

*Any vertex-minor closed class of graphs can be characterized by a **finite** set of forbidden vertex-minors.*

Definition

A vertex-minor closed class of graphs is **proper** if it does not contain every graph.

The simulation conjecture of Geelen

Conjecture

*If we restrict ourselves to preparing **graph states** from any **proper vertex-minor-closed class** of graphs, then measurement-based quantum computation is efficiently classically simulable.*

Reformulation:

Conjecture

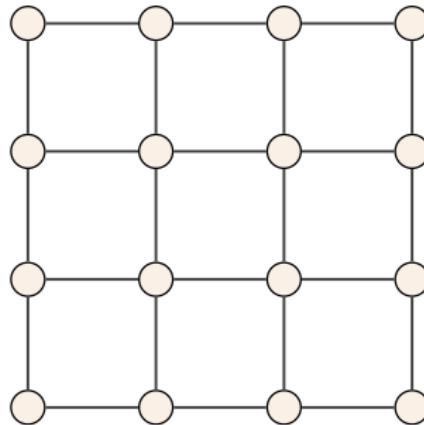
*If we restrict ourselves to preparing **graph states** from any **class of graphs that is closed under local complementation and vertex deletion, but not composed of all graphs**, then measurement-based quantum computation is efficiently classically simulable.*

Outline

- A counter-example
- Example 1: graphs of rank-width at most k
- Example 2: Circle graphs
- Is the simulation conjecture well-formulated?
- Towards proving the simulation conjecture

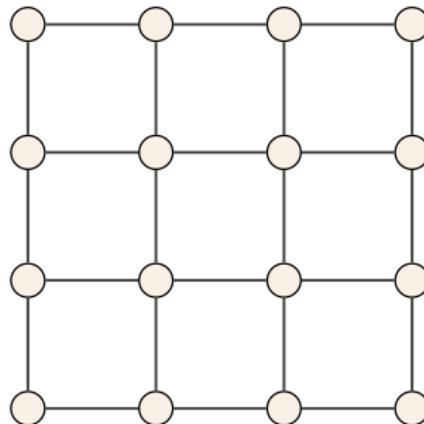
A counter-example

The square grid



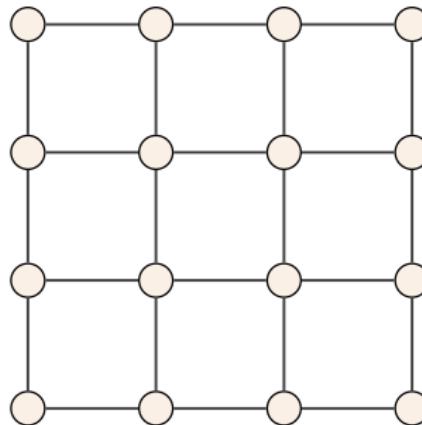
The class of grids is **universal** for measurement-based quantum computation.

The square grid



The class of grids is **universal** for measurement-based quantum computation. Thus, measurement-based quantum simulation on the grid graph states is **not** efficiently classically simulable (assuming $\text{BPP} \neq \text{BQP}$).

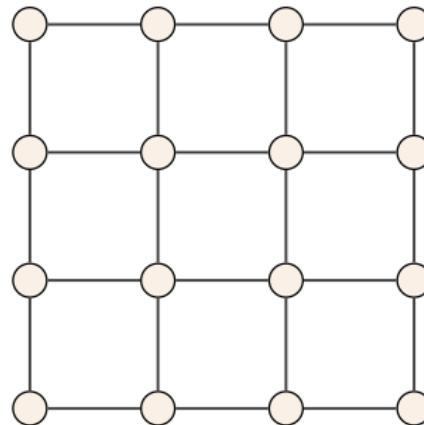
The square grid



The class of grids is **universal** for measurement-based quantum computation. Thus, measurement-based quantum simulation on the grid graph states is **not** efficiently classically simulable (assuming $BPP \neq BQP$). This is coherent with the simulation conjecture because:

- The class of 2D square grids is not vertex-minor closed.

The square grid



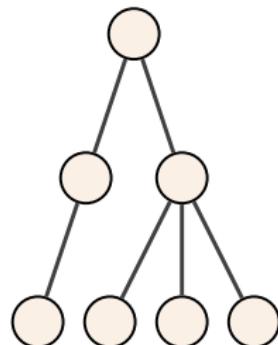
The class of grids is **universal** for measurement-based quantum computation. Thus, measurement-based quantum simulation on the grid graph states is **not** efficiently classically simulable (assuming $BPP \neq BQP$). This is coherent with the simulation conjecture because:

- The class of 2D square grids is not vertex-minor closed.
- The vertex-minor closure is not proper, i.e. it is the class of all graphs.

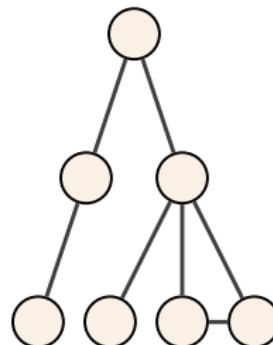
Rank-width

Tree-width

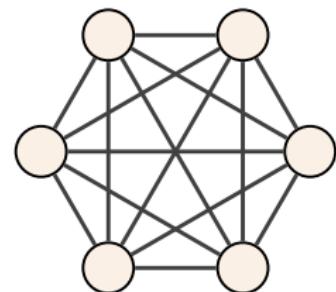
Informally, tree-width is a function in \mathbb{N} that measures how close a graph is to a tree.



tree-width = 1



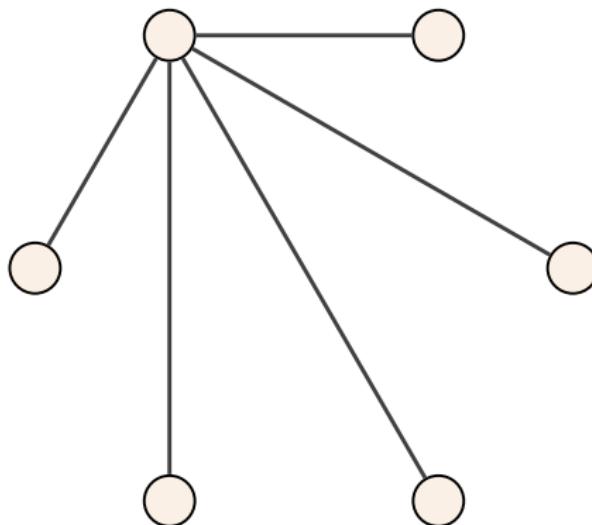
tree-width = 2



complete graph
on n vertices:
tree-width = $n - 1$

Tree-width does not pair well with local complementation

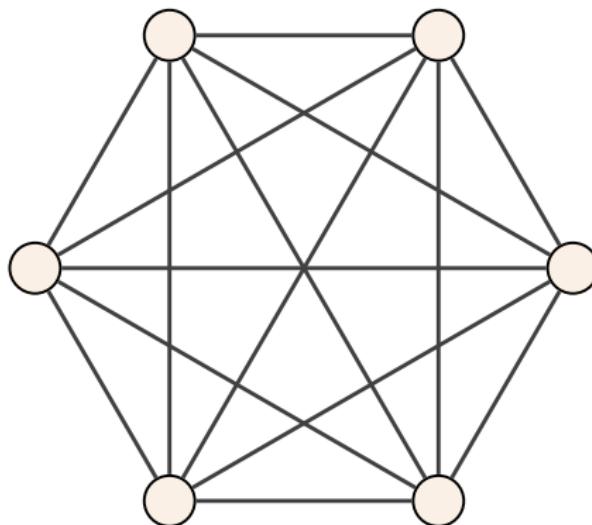
A star and a complete graph are the same up to local complementation.



tree-width = 1

Tree-width does not pair well with local complementation

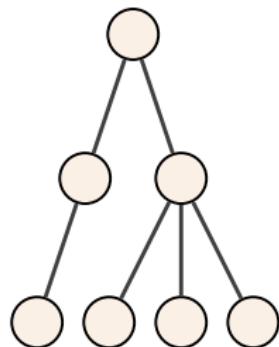
A star and a complete graph are the same up to local complementation.



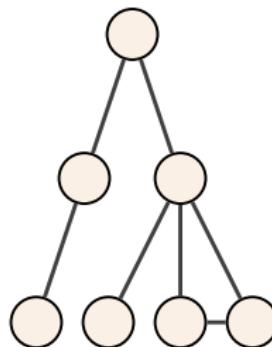
tree-width = $n - 1$

Rank-width

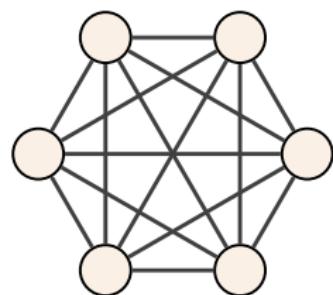
Informally, rank-width is like tree-width, but invariant by local complementation.



rank-width = 1



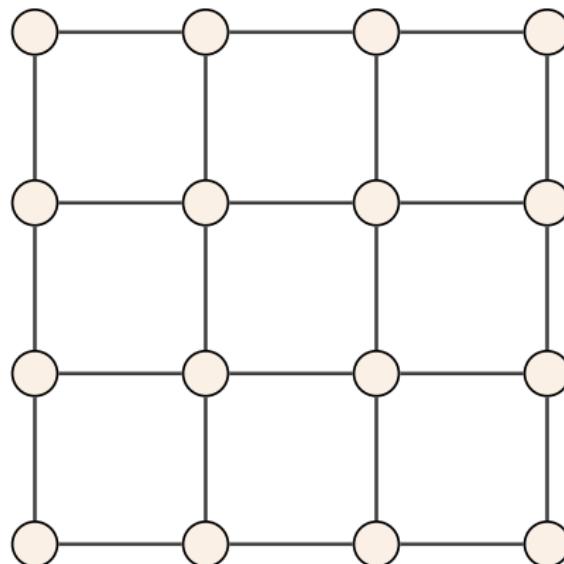
rank-width = 2



complete graph
on n vertices:
rank-width = 1

Rank-width of the square grid

The $m \times m$ square grid has rank-width $m - 1$ (Jelínek, 2008).



Low rank-width implies efficient classical simulation

Theorem (Van den Nest et al., 2006)

*If the **rank-width** of the graphs in a class \mathcal{G} grows at most logarithmically with the number of qubits, then measurement-based quantum computation on \mathcal{G} is efficiently classically simulable.*

In particular, measurement-based quantum computation is efficiently classically simulable if the rank-width is bounded.

A vertex-minor closed class of graphs

Rank-width is non-increasing under the vertex-minor relation. \implies

Proposition

For a fixed integer k , graphs of rank-width at most k form a proper vertex-minor closed class of graphs.

A vertex-minor closed class of graphs

Rank-width is non-increasing under the vertex-minor relation. \implies

Proposition

For a fixed integer k , graphs of rank-width at most k form a proper vertex-minor closed class of graphs.

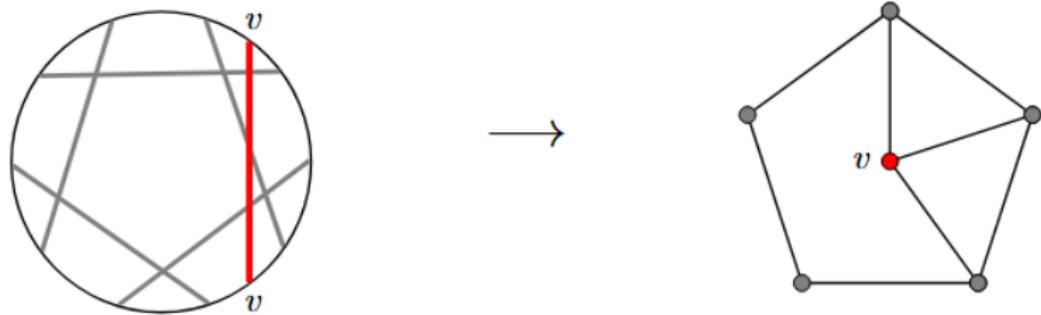
This is coherent with the simulation conjecture.

Circle graphs

Circle graphs: definition

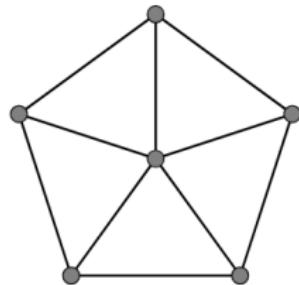
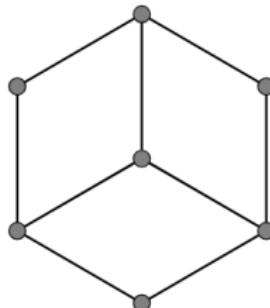
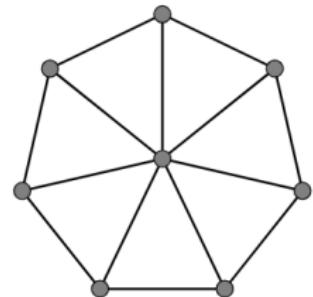
Definition

A circle graph is the intersection graph of a chord diagram.



Forbidden minors of circle graphs

Alternative definition: circle graphs are those graphs which do not have one of the 3 graphs below as a vertex-minor (Bouchet, 1994).



Importance of circle graphs

Circle graphs play in the theory of **vertex-minors** the role that **planar graphs**¹ play in the theory of **minors**².

¹planar = can be drawn in the plane without edges crossing.

²minor = obtained by vertex/edge deletion and edge contraction.

Importance of circle graphs

Circle graphs play in the theory of **vertex-minors** the role that **planar graphs**¹ play in the theory of **minors**².

Theorem (Grid theorem, Robertson and Seymour, 1986)

*For any **planar graph** G , there exists an integer r_G such that every graph with **tree-width** at least r_G has G as a **minor**.*

¹planar = can be drawn in the plane without edges crossing.

²minor = obtained by vertex/edge deletion and edge contraction.

Importance of circle graphs

Circle graphs play in the theory of **vertex-minors** the role that **planar graphs**¹ play in the theory of **minors**².

Theorem (Grid theorem, Robertson and Seymour, 1986)

*For any **planar graph** G , there exists an integer r_G such that every graph with **tree-width** at least r_G has G as a **minor**.*

Theorem (Grid theorem for vertex-minors, Geelen et al., 2020)

*For any **circle graph** G , there exists an integer r_G such that every graph with **rank-width** at least r_G has G as a **vertex-minor**.*

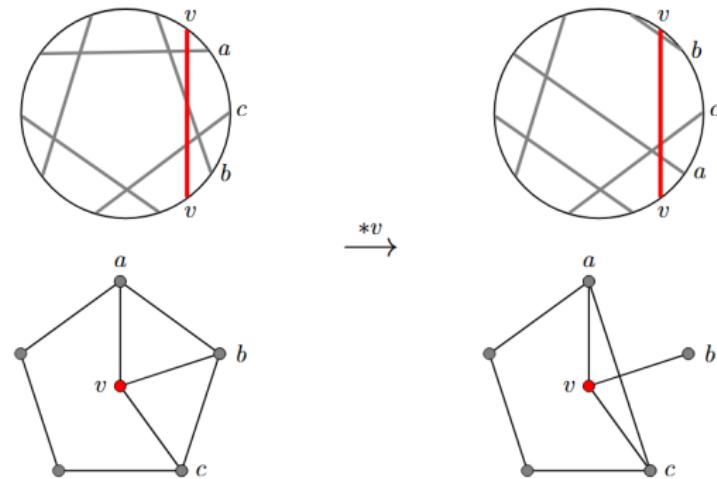
¹planar = can be drawn in the plane without edges crossing.

²minor = obtained by vertex/edge deletion and edge contraction.

Vertex-minors of circle graphs

Vertex deletion: removing a chord from the chord diagram.

Local complementation: "flipping" some chords.



Proposition

Circle graphs are a proper vertex-minor closed class of graphs.

Simulation of circle graphs

Very recent result:

Theorem (Harrison et al., 2025)

*Measurement-based quantum computation is efficiently classically simulable on **circle graphs**.*

Simulation of circle graphs

Very recent result:

Theorem (Harrison et al., 2025)

*Measurement-based quantum computation is efficiently classically simulable on **circle graphs**.*

This is the first example of a class of graphs whose rank-width grows polynomially with the number of vertices, but on which measurement-based quantum computation is efficiently classically simulable.

Simulation of circle graphs

Very recent result:

Theorem (Harrison et al., 2025)

*Measurement-based quantum computation is efficiently classically simulable on **circle graphs**.*

This is the first example of a class of graphs whose rank-width grows polynomially with the number of vertices, but on which measurement-based quantum computation is efficiently classically simulable.

This result is coherent with the simulation conjecture.

Is the conjecture well-formulated?

The simulation conjecture of Geelen

Conjecture (The simulation conjecture)

*If we restrict ourselves to preparing graph states from any proper **vertex-minor**-closed class of graphs, then measurement-based quantum computation is efficiently classically simulable.*

Limits of the vertex-minor formalism

Problem: the vertex-minor formalism only describes transformations of graph states that only use **local Clifford gates, local Pauli measurement, and classical communication**.

Limits of the vertex-minor formalism

Problem: the vertex-minor formalism only describes transformations of graph states that only use **local Clifford gates, local Pauli measurement, and classical communication.**

However, in the context of measurement-based quantum computation, all operations in LOCC (e.g. local unitaries not in Clifford) are allowed.

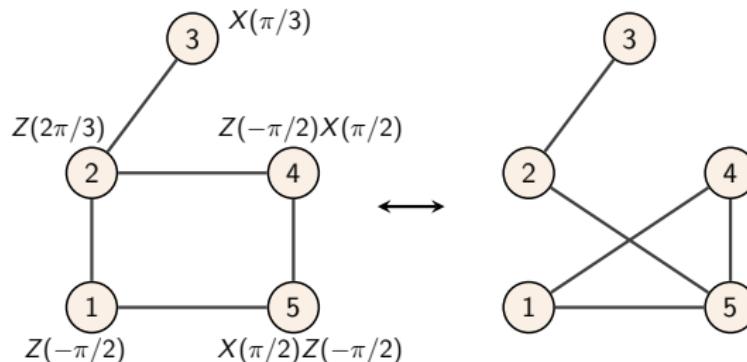
Local equivalences of graph states

Definition

Two quantum states are local unitary (LU) -equivalent if they are related by single-qubit unitary gates.

Definition

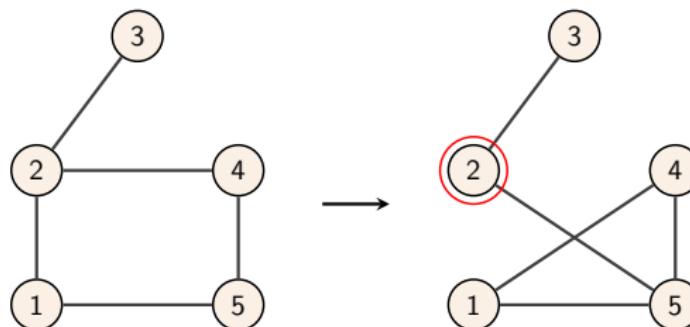
Two quantum states are local Clifford (LC) -equivalent if they are related by single-qubit Clifford gates.



Local complementation captures LC-equivalence

Theorem (Van den Nest, Dehaene, De Moor, 2004)

Two graph states are LC-equivalent iff the two corresponding graphs are related by **local complementations**.



$LU \neq LC$

Theorem (Ji et al., 2008)

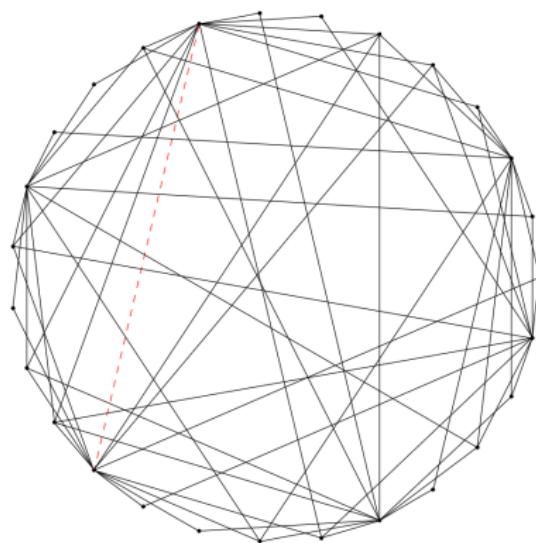
There exist graph states that are LU -equivalent but not LC -equivalent.

LU \neq LC

Theorem (Ji et al., 2008)

There exist graph states that are LU-equivalent but not LC-equivalent.

→ A 27-qubit counterexample to the LU=LC conjecture.



r-local complementation

r -local complementation is a generalization of local complementation that captures LU-equivalence:

Theorem (C, Perdrix, 2025)

Two graph states are LU-equivalent iff the two corresponding graphs are related by r -local complementations for some r .

Ongoing work: LU-equivalence of circle graphs

Theorem (Harrison et al., 2025)

*Measurement-based quantum computation is efficiently classically simulable on any state LU-equivalent to **circle graphs**.*

Ongoing work: LU-equivalence of circle graphs

Theorem (Harrison et al., 2025)

*Measurement-based quantum computation is efficiently classically simulable on any state LU-equivalent to **circle graphs**.*

Ongoing work:

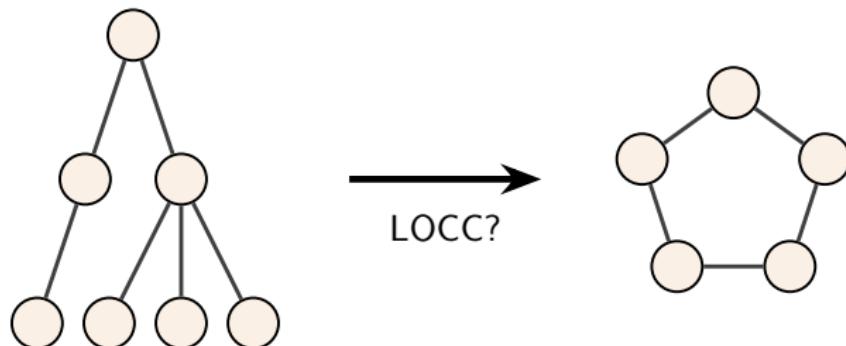
Proposition

Circle graphs are in fact closed by LU-equivalence, i.e. a graph state LU-equivalent to a circle graph state must be a circle graph state itself.

The proof makes use of r -local complementation.

Capturing LOCC transformations between graph states

Problem: how to tell graphically if a graph state $|H\rangle$ can be obtained from a (possibly bigger) graph state $|G\rangle$ by LOCC ?



A necessary condition

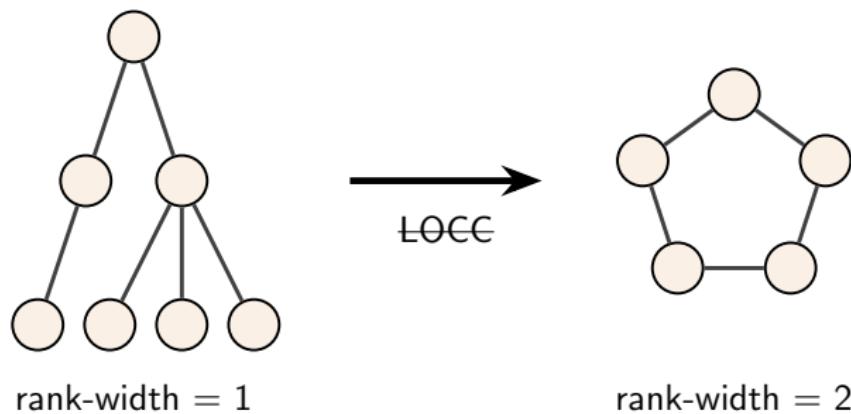
You can tell that $|H\rangle$ can **not** be obtained from $|G\rangle$ by LOCC if some entanglement measure is higher for $|H\rangle$ than for $|G\rangle$.

A necessary condition

You can tell that $|H\rangle$ can **not** be obtained from $|G\rangle$ by LOCC if some entanglement measure is higher for $|H\rangle$ than for $|G\rangle$.

Proposition

*If the rank-width of H is strictly higher than the rank-width of G , then $|H\rangle$ can **not** be obtained from $|G\rangle$ by LOCC.*



Capturing LOCC (ongoing work)

Question: Does r -local complementation + vertex-deletion capture LOCC transformations between graph states?

Capturing LOCC (ongoing work)

Question: Does r -local complementation + vertex-deletion capture LOCC transformations between graph states?

If it is the case \rightarrow notion of r -vertex minor, and maybe a better formulation of the simulation conjecture is:

Conjecture

*If we restrict ourselves to preparing **graph states** from any **proper r -vertex-minor-closed class** of graphs, then measurement-based quantum computation is efficiently classically simulable.*

A direction towards proving the simulation conjecture

Towards proving the simulation conjecture

Conjecture (Informal statement, Geelen)

For any proper vertex-minor-closed class of graphs \mathcal{G} , each graph in \mathcal{G} “decomposes” into parts that are “almost” circle graphs.

Towards proving the simulation conjecture

Conjecture (Informal statement, Geelen)

For any proper vertex-minor-closed class of graphs \mathcal{G} , each graph in \mathcal{G} “decomposes” into parts that are “almost” circle graphs.

Step 1: Proving this conjecture.

Towards proving the simulation conjecture

Conjecture (Informal statement, Geelen)

For any proper vertex-minor-closed class of graphs \mathcal{G} , each graph in \mathcal{G} “decomposes” into parts that are “almost” circle graphs.

Step 1: Proving this conjecture.

Step 2: Proving that measurement-based quantum computation on “almost” circle graph states is efficiently classically simulable.

Towards proving the simulation conjecture

Conjecture (Informal statement, Geelen)

For any proper vertex-minor-closed class of graphs \mathcal{G} , each graph in \mathcal{G} "decomposes" into parts that are "almost" circle graphs.

Step 1: Proving this conjecture.

Step 2: Proving that measurement-based quantum computation on "almost" circle graph states is efficiently classically simulable.

Step 3: Proving that measurement-based quantum computation is efficiently classically simulable on a graph state, if it is the case from every graph state in its "decomposition".

Thanks

