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Quantum computational power

If quantum computers are more powerful than classical computers,
exactly what features make them more powerful?

Related question: when do quantum computers have the same
computational power as classical computers?
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Quantum circuits with only local gates

No entanglement → The quantum computation can be efficiently
simulated on a classical computer.
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Quantum circuits with only Clifford gates

Theorem (Gottesman-Knill, 1998)

A quantum computation consisting only of Clifford gates can be efficiently
simulated on a classical computer.
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Sources of computational power

Two potential sources of quantum computational power:

1) Entanglement;

2) non-Clifford operations.
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Measurement-based quantum computation

The idea behind measurement-based quantum computation is to
separate the two potential sources of quantum computational power.

1) Prepare a graph state with only CZ gates (Clifford gates);

2) Measure qubits in some ways that may depend on the previous
measurements (no entanglement added).
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Universality of measurement-based quantum computation

Theorem (Briegel, Raussendorf, 2001)

Measurement-based quantum computation on the grid graph states has
the same computational power as quantum circuits.

We say that the grid graph states (also called the 2D cluster states) are
universal resources.
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Reformulation of the question

In measurement-based quantum computation, the question

”What features make quantum computers powerful?”

becomes

”Which graph states are universal resources?”

Alternatively:

”For which graph states is measurement-based quantum
computation efficiently classically simulable?”
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The simulation conjecture of Geelen

Conjecture (The simulation conjecture)

If we restrict ourselves to preparing graph states from any proper
vertex-minor-closed class of graphs, then measurement-based quantum
computation is efficiently classically simulable.
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Graph states and vertex-minors
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Graph states

A graph state is a quantum state represented by a graph. The vertices
represent the qubits and the edges represent entanglement.
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Local complementation

Definition

A local complementation on a vertex u consists in complementing the
(open) neighborhood of u.
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Vertex deletion

Definition

A vertex deletion on a vertex u consists removing u and its adjacent edges
from the graph.
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Vertex deletion

Definition

A vertex deletion on a vertex u consists removing u and its adjacent edges
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Vertex-minors

Definition (Vertex-minor)

H is a vertex-minor of G if H can be obtained from G by means of local
complementations + vertex deletions.
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Vertex-minor = local Clifford

Theorem (Dahlberg, Wehner, 2018)

If H is a vertex-minor of G then |H⟩ can be obtained from |G ⟩ by local
Clifford gates, local Pauli measurements, and classical communication.
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Vertex-minor closed class of graphs

Definition

A class of graph G is vertex-minor closed if any vertex-minor of some
G ∈ G is also in G.

Conjecture (The well-quasi-order conjecture)

Any vertex-minor closed class of graphs can be characterized by a finite
set of forbidden vertex-minors.

Definition

A vertex-minor closed class of graphs is proper if it does not contain every
graph.



16

Vertex-minor closed class of graphs

Definition

A class of graph G is vertex-minor closed if any vertex-minor of some
G ∈ G is also in G.

Conjecture (The well-quasi-order conjecture)

Any vertex-minor closed class of graphs can be characterized by a finite
set of forbidden vertex-minors.

Definition

A vertex-minor closed class of graphs is proper if it does not contain every
graph.



16

Vertex-minor closed class of graphs

Definition

A class of graph G is vertex-minor closed if any vertex-minor of some
G ∈ G is also in G.

Conjecture (The well-quasi-order conjecture)

Any vertex-minor closed class of graphs can be characterized by a finite
set of forbidden vertex-minors.

Definition

A vertex-minor closed class of graphs is proper if it does not contain every
graph.



17

The simulation conjecture of Geelen

Conjecture

If we restrict ourselves to preparing graph states from any proper
vertex-minor-closed class of graphs, then measurement-based quantum
computation is efficiently classically simulable.

Reformulation:

Conjecture

If we restrict ourselves to preparing graph states from any class of
graphs that is closed under local complementation and vertex
deletion, but not composed of all graphs, then measurement-based
quantum computation is efficiently classically simulable.
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Outline

A counter-example

Example 1: graphs of rank-width at most k

Example 2: Circle graphs

Is the simulation conjecture well-formulated?

Towards proving the simulation conjecture
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A counter-example
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The square grid

The class of grids is universal for measurement-based quantum
computation.

Thus, measurement-based quantum simulation on the grid
graph states is not efficiently classically simulable (assuming BPP̸=BQP).
This is coherent with the simulation conjecture because:

The class of 2D square grids is not vertex-minor closed.

The vertex-minor closure is not proper, i.e. it is the class of all graphs.
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Rank-width
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Tree-width

Informally, tree-width is a function in N that measures how close a graph
is to a tree.

tree-width = 1 tree-width = 2
complete graph

on n vertices:

tree-width = n − 1
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Tree-width does not pair well with local complementation

A star and a complete graph are the same up to local complementation.

tree-width = 1

tree-width = n − 1
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Rank-width

Informally, rank-width is like tree-width, but invariant by local
complementation.

rank-width = 1 rank-width = 2
complete graph

on n vertices:

rank-width = 1
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Rank-width of the square grid

The m ×m square grid has rank-width m − 1 (Jeĺınek, 2008).
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Low rank-width implies efficient classical simulation

Theorem (Van den Nest et al., 2006)

If the rank-width of the graphs in a class G grows at most
logarithmically with the number of qubits, then measurement-based
quantum computation on G is efficiently classically simulable.

In particular, measurement-based quantum computation is efficiently
classically simulable if the rank-with is bounded.
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A vertex-minor closed class of graphs

Rank-width is non-increasing under the vertex-minor relation. =⇒

Proposition

For a fixed integer k, graphs of rank-width at most k form a proper
vertex-minor closed class of graphs.

This is coherent with the simulation conjecture.
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Circle graphs
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Circle graphs: definition

Definition

A circle graph is the intersection graph of a chord diagram.

Rose McCarty, PhD Thesis
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Forbidden minors of circle graphs

Alternative definition: circle graphs are those graphs which do not have
one of the 3 graphs below as a vertex-minor (Bouchet, 1994).

Rose McCarty, PhD Thesis
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Importance of circle graphs

Circle graphs play in the theory of vertex-minors the role that planar
graphs1 play in the theory of minors2.

Theorem (Grid theorem, Robertson and Seymour, 1986)

For any planar graph G, there exists an integer rG such that every graph
with tree-width at least rG has G as a minor.

Theorem (Grid theorem for vertex-minors, Geelen et al., 2020)

For any circle graph G, there exists an integer rG such that every graph
with rank-width at least rG has G as a vertex-minor.

1planar = can be drawn in the plane without edges crossing.
2minor = obtained by vertex/edge deletion and edge contraction.
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Vertex-minors of circle graphs

Vertex deletion: removing a chord from the chord diagram.
Local complementation: ”flipping” some chords.

Proposition

Circle graphs are a proper vertex-minor closed class of graphs.

Rose McCarty, PhD Thesis
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Simulation of circle graphs

Very recent result:

Theorem (Harrison et al., 2025)

Measurement-based quantum computation is efficiently classically
simulable on circle graphs.

This is the first example of a class of graphs whose rank-width grows
polynomially with the number of vertices, but on which
measurement-based quantum computation is efficiently classically
simulable.

This result is coherent with the simulation conjecture.
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Is the conjecture well-formulated?



35

The simulation conjecture of Geelen

Conjecture (The simulation conjecture)

If we restrict ourselves to preparing graph states from any proper
vertex-minor-closed class of graphs, then measurement-based quantum
computation is efficiently classically simulable.
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Limits of the vertex-minor formalism

Problem: the vertex-minor formalism only describes transformations of
graph states that only use local Clifford gates, local Pauli
measurement, and classical communication.

However, in the context of measurement-based quantum computation, all
operations in LOCC (e.g. local unitaries not in Clifford) are allowed.
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Local equivalences of graph states

Definition

Two quantum states are local unitary (LU) -equivalent if they are related
by single-qubit unitary gates.

Definition

Two quantum states are local Clifford (LC) -equivalent if they are related
by single-qubit Clifford gates.
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Local complementation captures LC-equivalence

Theorem (Van den Nest, Dehaene, De Moor, 2004)

Two graph states are LC-equivalent iff the two corresponding graphs are
related by local complementations.
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LU ̸= LC

Theorem (Ji et al., 2008)

There exist graph states that are LU-equivalent but not LC-equivalent.

→ A 27-qubit counterexample to the LU=LC conjecture.
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r-local complementation

r -local complementation is a generalization of local complementation that
captures LU-equivalence:

Theorem (C, Perdrix, 2025)

Two graph states are LU-equivalent iff the two corresponding graphs are
related by r-local complementations for some r.
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Ongoing work: LU-equivalence of circle graphs

Theorem (Harrison et al., 2025)

Measurement-based quantum computation is efficiently classically
simulable on any state LU-equivalent to circle graphs.

Ongoing work:

Proposition

Circle graphs are in fact closed by LU-equivalence, i.e. a graph state
LU-equivalent to a circle graph state must be a circle graph state itself.

The proof makes use of r -local complementation.
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Capturing LOCC transformations between graph states

Problem: how to tell graphically if a graph state |H⟩ can be obtained from
a (possibly bigger) graph state |G ⟩ by LOCC ?

LOCC?
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A necessary condition

You can tell that |H⟩ can not be obtained from |G ⟩ by LOCC if some
entanglement measure is higher for |H⟩ than for |G ⟩.

Proposition

If the rank-width of H is strictly higher than the rank-width of G, then |H⟩
can not be obtained from |G ⟩ by LOCC.

LOCC

rank-width = 1 rank-width = 2
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Capturing LOCC (ongoing work)

Question: Does r-local complementation + vertex-deletion capture LOCC
transformations between graph states?

If it is the case → notion of r -vertex minor, and maybe a better
formulation of the simulation conjecture is:

Conjecture

If we restrict ourselves to preparing graph states from any proper
r-vertex-minor-closed class of graphs, then measurement-based quantum
computation is efficiently classically simulable.
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A direction towards proving the simulation

conjecture
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Towards proving the simulation conjecture

Conjecture (Informal statement, Geelen)

For any proper vertex-minor-closed class of graphs G, each graph in G
“decomposes” into parts that are “almost” circle graphs.

Step 1: Proving this conjecture.

Step 2: Proving that measurement-based quantum computation on
”almost” circle graph states is efficiently classically simulable.

Step 3: Proving that measurement-based quantum computation is
efficiently classically simulable on a graph state, if it is the case from every
graph state in its ”decomposition”.
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Thanks
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