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Graph states

A graph state is a quantum state represented by an undirected1 and
simple2 graph. The vertices represent the qubits and the edges represent
entanglement.
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1Edges do not have a direction.
2No multiples edges and no loops.
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Stabilizer states

Graph states are a subfamilly of stabilizer states because for each vertex u,
applying X on u and applying Z on the neighbours of u leaves the graph
state invariant.
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Entanglement of graph states

Two different graph states can have the same entanglement, i.e. they are
related by local unitaries. In this case they are local unitary equivalent
(or LU-equivalent).
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Recognising local unitary equivalence

Is there an easy way to recognise whether two graph states are local
unitary equivalent ?
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Short answer: No.



7

Recognising local unitary equivalence

Is there an easy way to recognise whether two graph states are local
unitary equivalent ?

1

2

3

4

5 1

2

3

4

5

?

Short answer: No.



8

An easier subproblem: local Clifford equivalence

Two graph states are said local Clifford equivalent (or LC-equivalent) if
there are related by unitaries in the local Clifford group: < H,Z (π/2) >
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Theorem (Van den Nest, Dehaene, De Moor, 2004)

Two graph states are local Clifford equivalent iff the two corresponding
graphs are related by local complementations.
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Local complementation

Definition

A local complementation on a vertex u consists in complementing the
(open) neighbourhood of u.

1

2

3

4

5

1

2

3

4

5



9

Local complementation

Definition

A local complementation on a vertex u consists in complementing the
(open) neighbourhood of u.

1

2

3

4

5

1

2

3

4

5



9

Local complementation

Definition

A local complementation on a vertex u consists in complementing the
(open) neighbourhood of u.

1

2

3

4

5 1

2

3

4

5



10

Algorithmic aspect of local Clifford equivalence

There exists an efficient algorithm (Bouchet, 1991) to recognise whether
two graphs are related by local complementations, implying an efficient
algorithm to recognise whether two graphs are local Clifford equivalent.
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The LU=LC conjecture

Conjecture

Two graph states are local unitary equivalent iff they are local Clifford
equivalent.

False ! a 27-vertex counter-example (Ji et al., 2008) :

. . . . . .

Consequence: local complementation does not capture the local unitary
equivalence of graph states.



11

The LU=LC conjecture

Conjecture

Two graph states are local unitary equivalent iff they are local Clifford
equivalent.

False ! a 27-vertex counter-example (Ji et al., 2008) :

. . . . . .

Consequence: local complementation does not capture the local unitary
equivalence of graph states.



12

Generalising local complementation to capture

local unitary equivalence
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Adding weight to edges

Let’s write graphs as weighted graphs.

Edges become edges of weight 1.

Non-edges become edges of weight 0.
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Local complementation on a weighted graph

In the formalism of weighted graphs, a local complementation over a
vertex u consists in adding mod 2 a weight 1 to edges between the
neighbours of u.
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Towards a finer local complementation

One way to define a finer local complementation is to add (mod 2) a
weight 1/2.
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Problem: The outcome is not a graph !
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Multiple local complementations at once

Remark: we may define local complementation on an independent set of
vertices3 as the local complementations commute.
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3In an independent set, no two vertices are connected.
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Multiple finer local complementations at once

Now, with multiple finer local complementation adding (mod 2) weights
that are multiples of 1/2, the outcome may be a graph.
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When the outcome is a graph (i.e. all weights are 0 or 1 mod 2), this
operation is well defined (with some additional conditions). We call it a
2-local complementation.
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r -local complementation

We define an infinite family of similar operations parametrised by an
integer r :

r-local complementations

In an r -local complementation we add (mod 2) weights that are multiples
of 1/2r .
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r -local complementation captures a generalisation of local
Clifford equivalence

Theorem (Van den Nest, Dehaene, De Moor, 2004)

Two graph states are related by local unitaries in < H,Z (π/2) > (Clifford)
iff the two corresponding graphs are related by local complementations.

Theorem

Two graph states are related by local unitaries in < H,Z (π/2r ) > iff the
two corresponding graphs are related by r-local complementations.
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Main theorem

Theorem

Two graph states are local unitary equivalent iff the two corresponding
graphs are related by r-local complementations for some r .

Corollary

If two graph are local unitary equivalent, the local unitaries can be chosen
to be in the dyadic fragment generated by H and Z (π/2r ) for any r .
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Proof sketch: Minimal local set
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Minimal local sets are subsets of vertices that carry information on the
possible local unitaries that maps graph states to other graph states.

Theorem (Claudet, Perdrix, 2024)

Each vertex of a graph is covered by at least one minimal local set.
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Proof sketch: Standard form for graph states
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Application: local equivalence of repeater graph states

For some families of graph states, LU=LC.

Example: some repeater graph states (Tzitrin, 2018)
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An infinite strict hierarchy of local equivalences
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Is every r -local complementation necessary ?

Theorem

Two graph states are local unitary equivalent iff the two corresponding
graphs are related by r-local complementations for some r .

Natural question: Is 2-local complementation sufficient to characterise
local unitary equivalence ? 3-local complementation ?

Answer: No, r -local complementation for every r is necessary to
characterise local unitary equivalence.
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Constructive proof

For any r , we construct a pair of graphs that are related by (r + 1)-local
complementations but not r -local complementations.

. . .

. . .

. . .

. . .

{
∼ 2r

2

vertices

{
∼ 2r + r
vertices

Every upper vertex is related to exactly 2r + 1 vertices.
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The infinite strict hierarchy

G1 and G2 are related
by local complementations

by 2-local
complementations

by 3-local
complementations

...
G1 and G2 are local
unitary equivalent
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Conclusion
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Conclusion

The generalised local complementation is a graph rule that completely
captures the local unitary equivalence of graph states.

Possible applications:

A new tool for quantum network routing

LU=LC for graph up to 26 vertices ?

Algorithmic aspect of local unitary equivalence
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Thanks
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