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Quantum communication networks

-\ «— entanglement

4/19



Correspondence between quantum graph states and graphs
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local (i.e. single-qubit) local complementations

quantum operations & vertex disconnections
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Local complementation

Given a graph G, a local complementation on a vertex u consists in
complementing the (open) neighborhood of u in G.
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Vertex-minors

Given two graphs G = (Vg, Eg) and H = (Vy, Ey) such that Vy C Vg,
H is a vertex-minor of G if H can be obtained as a induced subgraph of G
by means of local complementations.
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Vertex-minors

Given two graphs G = (Vg, Eg) and H = (Vy, Ey) such that Vy C Vg,
H is a vertex-minor of G if H can be obtained as a induced subgraph of G
by means of local complementations.
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A graph G is k-vertex-minor universal if any graph on any k vertices is a
vertex-minor of G.
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k-vertex-minor universal graphs : example 1

K3 is 2-vertex-minor universal.
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k-vertex-minors-universal graphs : example 2

Cs is 3-vertex-minor universal.
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k-pairable states : example 3

The Petersen graph is 4-vertex-minor universal.
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Polynomial-size k-vertex-minors-universal graphs

For any k, there exists a k-vertex-minor universal graph of order
n = O(k*In(k)).
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Polynomial-size k-vertex-minors-universal graphs

For any k, there exists a k-vertex-minor universal graph of order
n = O(k*In(k)).

Idea of proof: Probabilistic construction of a balanced (k + 1)-partite
graph.

Probability of two vertices u and v sharlng an edge : 0 if u and v are in
the same component, 2/k else. VK € (V), Ji st. KN A; = 0.
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An upper bound on k-vertex-minor universality

For any k, a k-vertex-minor universal graph is at least of order n = O(k?). I
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A graph G is k-pairable if any perfect matching on any 2k vertices is a
vertex-minor of G.
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A graph G is k-pairable if any perfect matching on any 2k vertices is a
vertex-minor of G.

2k-vertex-minor universality —> k-pairability.

For any k, there exists a k-pairable graph on n = O(k®In3(k)) qubits.
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Conclusion

Introduction of the notion of k-vertex-minor universal graphs.
Main result: for any k there exist k-vertex-minor universal graph of order

O(k* In(k)).
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Introduction of the notion of k-vertex-minor universal graphs.
Main result: for any k there exist k-vertex-minor universal graph of order
O(k*In(k)).

Future work:
o Explicit constructions?
o Existence of k-vertex-minor universal graphs of order O(k3)? O(k?)?

o k-pairability = 2k-vertex-minor universality?
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Thanks
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