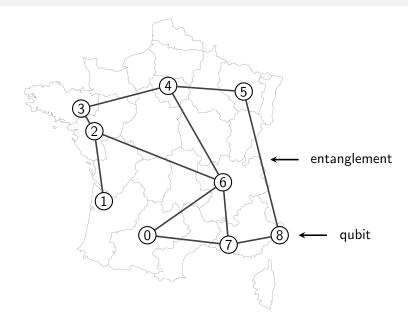

k-vertex-minor universal graphs

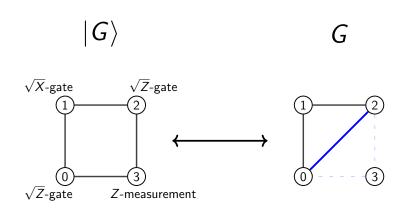
and small k-pairable quantum states

Nathan Claudet, Mehdi Mhalla, Simon Perdrix

Journées Graphes et Algorithmes 2023 - 22/11/23 arXiv:2309.09956



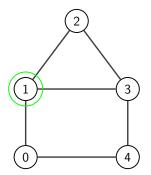
Outline


- Motivation quantum communication networks
- Some results
- \blacksquare A variation : k-pairable graphs
- Conclusion

Motivation - quantum communication networks

Quantum communication networks

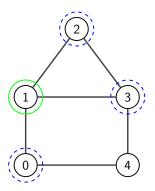
Correspondence between quantum graph states and graphs


local (i.e. single-qubit) quantum operations

local complementations & vertex disconnections

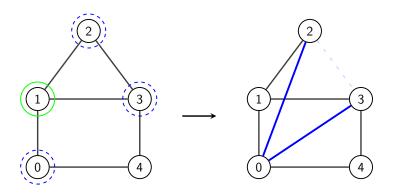
Local complementation

Definition (Local complementation)


Given a graph G, a local complementation on a vertex u consists in complementing the (open) neighborhood of u in G.

Local complementation

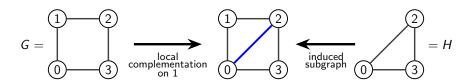
Definition (Local complementation)


Given a graph G, a local complementation on a vertex u consists in complementing the (open) neighborhood of u in G.

Local complementation

Definition (Local complementation)

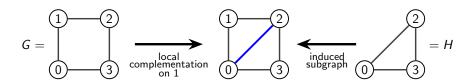
Given a graph G, a local complementation on a vertex u consists in complementing the (open) neighborhood of u in G.



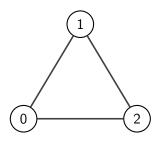
k-vertex-minor universal graphs

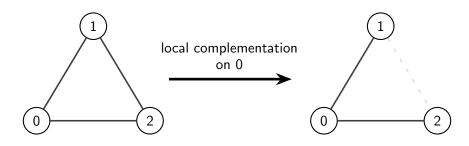
Vertex-minors

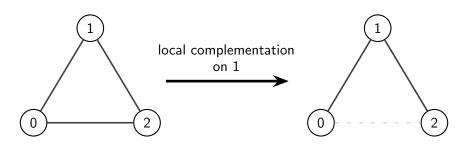
Definition (Vertex-minor)

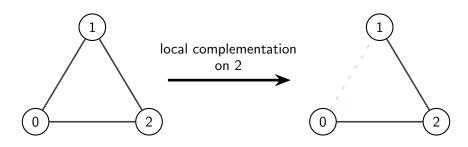

Given two graphs $G = (V_G, E_G)$ and $H = (V_H, E_H)$ such that $V_H \subseteq V_G$, H is a vertex-minor of G if H can be obtained as a induced subgraph of G by means of local complementations.

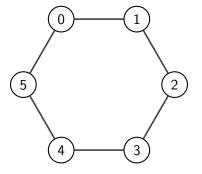
Vertex-minors

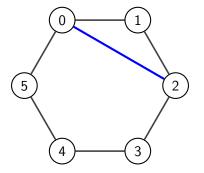

Definition (Vertex-minor)

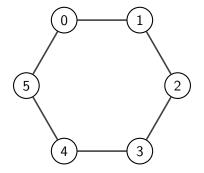

Given two graphs $G = (V_G, E_G)$ and $H = (V_H, E_H)$ such that $V_H \subseteq V_G$, H is a vertex-minor of G if H can be obtained as a induced subgraph of G by means of local complementations.



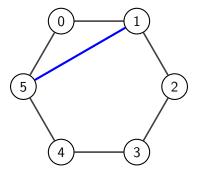

Definition


A graph G is k-vertex-minor universal if any graph on any k vertices is a vertex-minor of G.

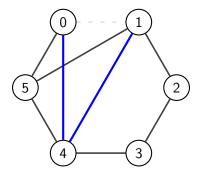




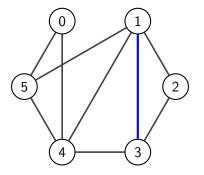
 C_6 is 3-vertex-minor universal.


To induce the complete graph on $\{0,1,2\}$: Local complementation on 1.

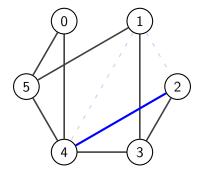
 C_6 is 3-vertex-minor universal.


To induce the complete graph on $\{0,1,2\}$: Local complementation on 1.

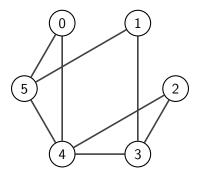
 C_6 is 3-vertex-minor universal.


To induce the complete graph on $\{0,1,2\}$: Local complementation on 1. To induce the empty graph on $\{0,1,2\}$: Local complementation on 0,

 C_6 is 3-vertex-minor universal.

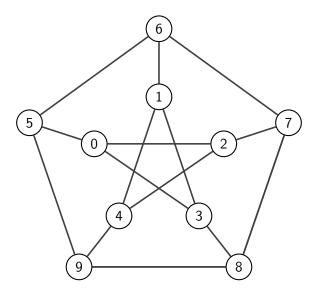

To induce the complete graph on $\{0,1,2\}$: Local complementation on 1. To induce the empty graph on $\{0,1,2\}$: Local complementation on 0, on 5,

 C_6 is 3-vertex-minor universal.


To induce the complete graph on $\{0,1,2\}$: Local complementation on 1. To induce the empty graph on $\{0,1,2\}$: Local complementation on 0, on 5, on 2,

 C_6 is 3-vertex-minor universal.

To induce the complete graph on $\{0,1,2\}$: Local complementation on 1. To induce the empty graph on $\{0,1,2\}$: Local complementation on 0, on 5, on 2, on 3.


 C_6 is 3-vertex-minor universal.

To induce the complete graph on $\{0,1,2\}$: Local complementation on 1. To induce the empty graph on $\{0,1,2\}$: Local complementation on 0, on 5, on 2, on 3.

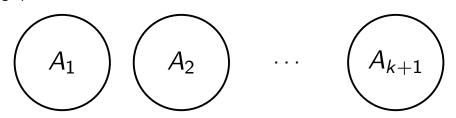
k-pairable states : example 3

The Petersen graph is 4-vertex-minor universal.

Some results

Polynomial-size *k*-vertex-minors-universal graphs

Proposition (Claudet, Mhalla, Perdrix 2023)


For any k, there exists a k-vertex-minor universal graph of order $n = O(k^4 \ln(k))$.

Polynomial-size *k*-vertex-minors-universal graphs

Proposition (Claudet, Mhalla, Perdrix 2023)

For any k, there exists a k-vertex-minor universal graph of order $n = O(k^4 \ln(k))$.

Idea of proof: Probabilistic construction of a balanced (k + 1)-partite graph.

Probability of two vertices u and v sharing an edge : 0 if u and v are in the same component, 2/k else. $\forall K \in \binom{v}{k}$, $\exists i$ s.t. $K \cap A_i = \emptyset$.

An upper bound on k-vertex-minor universality

Proposition

For any k, a k-vertex-minor universal graph is at least of order $n = O(k^2)$.

A variation : k-pairable graphs

Definition

A graph G is k-pairable if any perfect matching on any 2k vertices is a vertex-minor of G.

Definition

A graph G is k-pairable if any perfect matching on any 2k vertices is a vertex-minor of G.

Proposition

2k-vertex-minor universality $\implies k$ -pairability.

Definition

A graph G is k-pairable if any perfect matching on any 2k vertices is a vertex-minor of G.

Proposition

2k-vertex-minor universality $\implies k$ -pairability.

Proposition (Claudet, Mhalla, Perdrix 2023)

For any k, there exists a k-pairable graph on $n = O(k^3 \ln^3(k))$ qubits.

Introduction of the notion of k-vertex-minor universal graphs. Main result: for any k there exist k-vertex-minor universal graph of order $O(k^4 \ln(k))$.

Introduction of the notion of k-vertex-minor universal graphs. Main result: for any k there exist k-vertex-minor universal graph of order $O(k^4 \ln(k))$.

Future work:

• Explicit constructions?

Introduction of the notion of k-vertex-minor universal graphs. Main result: for any k there exist k-vertex-minor universal graph of order $O(k^4 \ln(k))$.

Future work:

- Explicit constructions?
- Existence of k-vertex-minor universal graphs of order $O(k^3)$? $O(k^2)$?

Introduction of the notion of k-vertex-minor universal graphs. Main result: for any k there exist k-vertex-minor universal graph of order $O(k^4 \ln(k))$.

Future work:

- Explicit constructions?
- Existence of k-vertex-minor universal graphs of order $O(k^3)$? $O(k^2)$?
- k-pairability = 2k-vertex-minor universality?

Thanks

arXiv:2309.09956