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Graph states, local unitary equivalence, local

Clifford equivalence & local complementation
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Graph states

A graph state is a quantum state represented by an undirected1 and
simple2 graph. The vertices represent the qubits and the edges represent
entanglement.
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Stabilizer states

Graph states are a subfamilly of stabilizer states because for each vertex u,
applying X on u and applying Z on the neighbours of u leaves the graph
state invariant.
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Entanglement of graph states

Graph states are useful entangled resources (MBQC, quantum networks...).
→ It is a fundamental problem to know whether two graph states have the
same entanglement, i.e. the graph states are related by SLOCC.

Theorem (Van den Nest, Dehaene, De Moor, 2004)

Two graph states are SLOCC-equivalent iff they are local unitary
equivalent (or LU-equivalent), i.e. they are related by a tensor product of
single-qubit unitaries.
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An easier subproblem: local Clifford equivalence

Two graph states are said local Clifford equivalent (or LC-equivalent) if
they are related by unitaries in the local Clifford group.
Single-qubit Clifford group = < H,Z (π/2) >.
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Theorem (Van den Nest, Dehaene, De Moor, 2004)

Two graph states are LC-equivalent iff the two corresponding graphs are
related by local complementations.
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Local complementation

Definition (Kotzig, 1966)

A local complementation on a vertex u consists in complementing the
(open) neighbourhood of u.
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Algorithmic aspect of local Clifford equivalence

Proposition (Bouchet, 1991)

There exists an efficient algorithm to decide if two graphs are related by
local complementations.

→ algorithm to decide if two graph states are LC-equivalent.
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Quick history of the LU=LC conjecture
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The LU=LC conjecture

Formulated in the early 2000’s.

Conjecture

LU=LC i.e. if two graph states are LU-equivalent (local unitaries) then
they are LC-equivalent (local Clifford).
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Preliminary results towards LU=LC

LU=LC for:

Graph states over at most 7 qubits (Hein, Eisert, Briegel, 2005)

Complete graphs i.e. GHZ states (Van den Nest, Dehaene, De Moor,
2005)

Graph states satisfying the minimal support condition (Van den
Nest, Dehaene, De Moor 2005)

Graphs with no cycle of length 3 or 4 (Zeng et al. 2007)

Proposition (Gross, Van den Nest, 2007)

If two graph states are LU-equivalent, the local unitaries can be chosen to
be of the form C1Z (θ)C2 where C1 and C2 are Clifford.
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LU ̸= LC

However, LU ̸= LC, i.e. local unitary equivalence and local Clifford
equivalence do not coincide.

→ 27-qubit pair of graph states that are
LU-equivalent but not LC-equivalent (Ji et al. 2008).



12

LU ̸= LC

However, LU ̸= LC, i.e. local unitary equivalence and local Clifford
equivalence do not coincide.→ 27-qubit pair of graph states that are
LU-equivalent but not LC-equivalent (Ji et al. 2008).



13

Another look at the 27-vertex counterexample

The 27-vertex counterexample is LC-equivalent to a prettier pair of graphs
(Tsimakuridze, Gühne, 2017).
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Other results after LU ̸= LC

Proposition (Sarvepalli, Raussendorf, 2010)

There exist infinitely many counterexamples to the LU=LC conjecture.

Some other families of graph states for which LU=LC i.e. local
complementation captures local unitary equivalence, have been discovered:

Graph states over at most 8 qubits (Cabello et al. 2009)

Large enough cluster states (Sarvepalli, Raussendorf, 2010)

Complete bipartite graphs (Tzitrin, 2018)

But what about LU-equivalence for any graph ? Can we construct a
graphical characterisation ?
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Generalizing local complementation to capture

local unitary equivalence
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A refinement of idempotent local complementations

A sequence of local complementations may leave the graph invariant.
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A 2-local complementation consists in toggling every edge that was
toggled 2 mod 4 times by the idempotent local complementations.
(There are also some additional conditions on the edges for the 2-local
complementation the be valid.)
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Example of a 2-local complementation

. . . . . .

Z(π
4
) Z(π

4
) Z(π

4
)Z(π

4
) Z(π

4
) Z(π

4
)

X (π
4
) X (π

4
) X (π

4
) X (π

4
)



17

Example of a 2-local complementation

. . . . . .

Z(π
4
) Z(π

4
) Z(π

4
)Z(π

4
) Z(π

4
) Z(π

4
)

X (π
4
) X (π

4
) X (π

4
) X (π

4
)



18

r -local complementation

3-local complementation is a refinement of idempotent 2-local
complementation, and so on...
→ Infinite family of graphical operations parametrised by an integer r :

r-local complementations

1-local complementation = local complementation.
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Graphical characterization of entanglement

Recall: LC-equivalent ⇔ related by local unitaries in < H,Z (π/2) >.
Define: LCr -equivalent ⇔ related by local unitaries in < H,Z (π/2r ) >.

Theorem (C, Perdrix, 2025)

Two graph states are LCr -equivalent iff the two corresponding graphs are
related by r-local complementations.

For r = 1, we recover local Clifford ⇔ local complementation.

Theorem (C, Perdrix, 2025)

Two graph states are LU-equivalent iff the two corresponding graphs are
related by r-local complementations for some r.



19

Graphical characterization of entanglement

Recall: LC-equivalent ⇔ related by local unitaries in < H,Z (π/2) >.
Define: LCr -equivalent ⇔ related by local unitaries in < H,Z (π/2r ) >.

Theorem (C, Perdrix, 2025)

Two graph states are LCr -equivalent iff the two corresponding graphs are
related by r-local complementations.

For r = 1, we recover local Clifford ⇔ local complementation.

Theorem (C, Perdrix, 2025)

Two graph states are LU-equivalent iff the two corresponding graphs are
related by r-local complementations for some r.



19

Graphical characterization of entanglement

Recall: LC-equivalent ⇔ related by local unitaries in < H,Z (π/2) >.
Define: LCr -equivalent ⇔ related by local unitaries in < H,Z (π/2r ) >.

Theorem (C, Perdrix, 2025)

Two graph states are LCr -equivalent iff the two corresponding graphs are
related by r-local complementations.

For r = 1, we recover local Clifford ⇔ local complementation.

Theorem (C, Perdrix, 2025)

Two graph states are LU-equivalent iff the two corresponding graphs are
related by r-local complementations for some r.



20

An infinite hierarchy of local equivalences

G1 and G2 are related
by local complementations

by 2-local
complementations

by 3-local
complementations

...
G1 and G2 are local
unitary equivalent
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Proof that r-local complementation captures

LU-equivalence
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Minimal local sets

Definition (Odd neighbourhood)

Given a set of vertices D, the odd neighbourhood OddG (D) of D is the
set of vertices that are neighbours of an odd number of vertices in D.
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Minimal local sets

Definition

A local set is a non-empty vertex set of the form L = D ∪ OddG (D).
A minimal local set is a local set that is minimal by inclusion (i.e it
doesn’t strictly contain another local set).
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Minimal local set

Proposition

(Minimal) local sets are LU-invariant, i.e. two LU-equivalent graph states
have the same minimal local sets.

Local sets ⇔ stabilizers of the graph state : XDZOdd(D).

Minimal local sets ⇔ stabilizers of minimal support.

Minimal local sets carry information on the possible local unitaries that
maps graph states to other graph states.
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Minimal local sets cover any graph

Theorem (C, Perdrix, 2024)

Each vertex of a graph is covered by at least one minimal local set.

1

2

3

4

5
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Proof sketch: Standard form for graph states

G1 G2

local unitaries
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⊥
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r -local complementation
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Application 1: a toolbox to prove LU=LC for

classes of graphs
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An exponential bound on LCr -equivalence

Proposition (C, Perdrix, 2025)

Suppose n ⩽ 2r+3 − 1. If two graph states over n qubits are LU-equivalent
then they are LCr -equivalent i.e. LU=LCr .

In particular:

If n ⩽ 15, LU=LC;

If n ⩽ 31, LU=LC2.

Corollary

To prove that LU = LC for some graph state on less that 31 qubits, it is
enough to prove that any 2-local complementation can be implemented
with usual local complementations.

Proposition (C, Perdrix, 2025)

LU=LC for graph states up to 19 qubits.
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A graphical characterization for LU=LC

Proposition (C, Perdrix, 2024)

LU=LC for |G ⟩ if there exists |G ′⟩ such that:

|G ⟩ and |G ′⟩ are LC-equivalent;

G’ is in standard form;

Any r-local complementation over VX can be implemented by usual
local complementations.

G

local complementations

VX

VZ

⊥

}
G ′
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Example: LU=LC for repeater graph states

It was conjectured that LU=LC holds for some repeater graph states
(Tzitrin, 2018). We showed that this is indeed the case.
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Application 2: a quasi-polynomial algorithm for

LU-equivalence
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Application 3: A quasi-polynomial algorithm to decide
local unitary equivalence

Theorem (C, Perdrix, 2025)

There exists an algorithm that decides if two graph states are
LU-equivalent with runtime nlog2(n)+O(1).
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Step 1: Standard form

G1 G2

local unitaries ?

VX

VZ

⊥

VX

VZ

⊥

local

complementations

local

complementations

r -local complementation

over VX ?
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Step 2: Reduction to LC-equivalence with constraints

VX

. . .

VZ

⊥

VX

. . .

VZ

⊥

r -local complementation

over VX ?

Local complementations over

specific sets of vertices ?
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Summary

The generalized local complementation is a graph rule that fully captures
the LU-equivalence of graph states. Using this graph rule, we showed:

An infinite strict hierarchy of local equivalence;

LU=LC for graph states up to 19 qubits;

A quasi-polynomial algorithm for LU-equivalence.
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Does there exist a counter-example to the LU=LC conjecture between
20 and 26 qubits ?

Does there exist a polynomial-time algorithm for LU-equivalence ?
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