Recognizing graph states with the same entanglement by looking at the underlying graphs

Nathan Claudet

University of Innsbruck - 07/04/25

Graph states, local unitary equivalence, local Clifford equivalence & local complementation

¹Edges do not have a direction. ²No multiples edges and no loops.

¹Edges do not have a direction.

²No multiples edges and no loops.

¹Edges do not have a direction.

²No multiples edges and no loops.

¹Edges do not have a direction.

²No multiples edges and no loops.

¹Edges do not have a direction.

²No multiples edges and no loops.

¹Edges do not have a direction.

²No multiples edges and no loops.

¹Edges do not have a direction.

²No multiples edges and no loops.

Graph states are a subfamilly of stabilizer states because for each vertex u, applying X on u and applying Z on the neighbours of u leaves the graph state invariant.

Graph states are useful entangled resources (MBQC, quantum networks...). \rightarrow It is a fundamental problem to know whether two graph states have the same entanglement, i.e. the graph states are related by SLOCC.

Graph states are useful entangled resources (MBQC, quantum networks...). \rightarrow It is a fundamental problem to know whether two graph states have the same entanglement, i.e. the graph states are related by SLOCC.

Theorem (Van den Nest, Dehaene, De Moor, 2004)

Two graph states are SLOCC-equivalent iff they are local unitary equivalent (or LU-equivalent), i.e. they are related by a tensor product of single-qubit unitaries.

Graph states are useful entangled resources (MBQC, quantum networks...). \rightarrow It is a fundamental problem to know whether two graph states have the same entanglement, i.e. the graph states are related by SLOCC.

Theorem (Van den Nest, Dehaene, De Moor, 2004)

Two graph states are SLOCC-equivalent iff they are local unitary equivalent (or LU-equivalent), i.e. they are related by a tensor product of single-qubit unitaries.

Graph states are useful entangled resources (MBQC, quantum networks...). \rightarrow It is a fundamental problem to know whether two graph states have the same entanglement, i.e. the graph states are related by SLOCC.

Theorem (Van den Nest, Dehaene, De Moor, 2004)

Two graph states are SLOCC-equivalent iff they are local unitary equivalent (or LU-equivalent), i.e. they are related by a tensor product of single-qubit unitaries.

An easier subproblem: local Clifford equivalence

Two graph states are said **local Clifford equivalent** (or LC-equivalent) if they are related by unitaries in the local Clifford group. Single-qubit Clifford group = $\langle H, Z(\pi/2) \rangle$.

An easier subproblem: local Clifford equivalence

Two graph states are said **local Clifford equivalent** (or LC-equivalent) if they are related by unitaries in the local Clifford group. Single-qubit Clifford group = $\langle H, Z(\pi/2) \rangle$.

Theorem (Van den Nest, Dehaene, De Moor, 2004)

Two graph states are LC-equivalent iff the two corresponding graphs are related by **local complementations**.

Definition (Kotzig, 1966)

Definition (Kotzig, 1966)

Definition (Kotzig, 1966)

Definition (Kotzig, 1966)

Algorithmic aspect of local Clifford equivalence

Proposition (Bouchet, 1991)

There exists an efficient algorithm to decide if two graphs are related by local complementations.

 \rightarrow algorithm to decide if two graph states are LC-equivalent.

Quick history of the LU=LC conjecture

The LU=LC conjecture

Formulated in the early 2000's.

Conjecture

LU=LC i.e. if two graph states are LU-equivalent (local unitaries) then they are LC-equivalent (local Clifford).

The LU=LC conjecture

Formulated in the early 2000's.

Conjecture

LU=LC i.e. if two graph states are LU-equivalent (local unitaries) then they are LC-equivalent (local Clifford).

The LU=LC conjecture

Formulated in the early 2000's.

Conjecture

LU=LC i.e. if two graph states are LU-equivalent (local unitaries) then they are LC-equivalent (local Clifford).

LU = LC for:

• Graph states over at most 7 qubits (Hein, Eisert, Briegel, 2005)

LU = LC for:

- Graph states over at most 7 qubits (Hein, Eisert, Briegel, 2005)
- Complete graphs i.e. GHZ states (Van den Nest, Dehaene, De Moor, 2005)

LU = LC for:

- Graph states over at most 7 qubits (Hein, Eisert, Briegel, 2005)
- Complete graphs i.e. GHZ states (Van den Nest, Dehaene, De Moor, 2005)
- Graph states satisfying the **minimal support condition** (Van den Nest, Dehaene, De Moor 2005)

LU = LC for:

- Graph states over at most 7 qubits (Hein, Eisert, Briegel, 2005)
- Complete graphs i.e. GHZ states (Van den Nest, Dehaene, De Moor, 2005)
- Graph states satisfying the **minimal support condition** (Van den Nest, Dehaene, De Moor 2005)
- Graphs with no cycle of length 3 or 4 (Zeng et al. 2007)

LU = LC for:

- Graph states over at most 7 qubits (Hein, Eisert, Briegel, 2005)
- Complete graphs i.e. GHZ states (Van den Nest, Dehaene, De Moor, 2005)
- Graph states satisfying the **minimal support condition** (Van den Nest, Dehaene, De Moor 2005)
- Graphs with no cycle of length 3 or 4 (Zeng et al. 2007)

Proposition (Gross, Van den Nest, 2007)

If two graph states are LU-equivalent, the local unitaries can be chosen to be of the form $C_1Z(\theta)C_2$ where C_1 and C_2 are Clifford.

$\mathsf{LU} \neq \mathsf{LC}$

However, LU \neq LC, i.e. local unitary equivalence and local Clifford equivalence do not coincide.

$\mathsf{LU} \neq \mathsf{LC}$

However, $LU \neq LC$, i.e. local unitary equivalence and local Clifford equivalence do not coincide. \rightarrow 27-qubit pair of graph states that are LU-equivalent but not LC-equivalent (Ji et al. 2008).

Another look at the 27-vertex counterexample

The 27-vertex counterexample is LC-equivalent to a prettier pair of graphs (Tsimakuridze, Gühne, 2017).

Another look at the 27-vertex counterexample

The 27-vertex counterexample is LC-equivalent to a prettier pair of graphs (Tsimakuridze, Gühne, 2017).

Proposition (Sarvepalli, Raussendorf, 2010)

There exist infinitely many counterexamples to the LU=LC conjecture.

Proposition (Sarvepalli, Raussendorf, 2010)

There exist infinitely many counterexamples to the LU=LC conjecture.

Some other families of graph states for which LU=LC i.e. local complementation captures local unitary equivalence, have been discovered:
There exist infinitely many counterexamples to the LU=LC conjecture.

Some other families of graph states for which LU=LC i.e. local complementation captures local unitary equivalence, have been discovered:

• Graph states over at most 8 qubits (Cabello et al. 2009)

There exist infinitely many counterexamples to the LU=LC conjecture.

Some other families of graph states for which LU=LC i.e. local complementation captures local unitary equivalence, have been discovered:

- Graph states over at most 8 qubits (Cabello et al. 2009)
- Large enough cluster states (Sarvepalli, Raussendorf, 2010)

There exist infinitely many counterexamples to the LU=LC conjecture.

Some other families of graph states for which LU=LC i.e. local complementation captures local unitary equivalence, have been discovered:

- Graph states over at most 8 qubits (Cabello et al. 2009)
- Large enough cluster states (Sarvepalli, Raussendorf, 2010)
- Complete bipartite graphs (Tzitrin, 2018)

There exist infinitely many counterexamples to the LU=LC conjecture.

Some other families of graph states for which LU=LC i.e. local complementation captures local unitary equivalence, have been discovered:

- Graph states over at most 8 qubits (Cabello et al. 2009)
- Large enough cluster states (Sarvepalli, Raussendorf, 2010)
- Complete bipartite graphs (Tzitrin, 2018)

But what about LU-equivalence for **any** graph ? Can we construct a graphical characterisation ?

Generalizing local complementation to capture local unitary equivalence

A sequence of local complementations may leave the graph invariant.

A **2-local complementation** consists in toggling every edge that was toggled 2 mod 4 times by the idempotent local complementations. (There are also some additional conditions on the edges for the 2-local complementation the be valid.)

A sequence of local complementations may leave the graph invariant.

A **2-local complementation** consists in toggling every edge that was toggled 2 mod 4 times by the idempotent local complementations. (There are also some additional conditions on the edges for the 2-local complementation the be valid.)

Example of a 2-local complementation

Example of a 2-local complementation

3-local complementation is a refinement of idempotent 2-local complementation, and so on...

 \rightarrow Infinite family of graphical operations parametrised by an integer r:

r-local complementations

1-local complementation = local complementation.

Recall: LC-equivalent \Leftrightarrow related by local unitaries in $\langle H, Z(\pi/2) \rangle$. Define: **LC**_r-equivalent \Leftrightarrow related by local unitaries in $\langle H, Z(\pi/2^r) \rangle$. Recall: LC-equivalent \Leftrightarrow related by local unitaries in $\langle H, Z(\pi/2) \rangle$. Define: **LC**_r-equivalent \Leftrightarrow related by local unitaries in $\langle H, Z(\pi/2^r) \rangle$.

Theorem (C, Perdrix, 2025)

Two graph states are LC_r -equivalent iff the two corresponding graphs are related by r-local complementations.

For r = 1, we recover local Clifford \Leftrightarrow local complementation.

Recall: LC-equivalent \Leftrightarrow related by local unitaries in $\langle H, Z(\pi/2) \rangle$. Define: **LC**_r-equivalent \Leftrightarrow related by local unitaries in $\langle H, Z(\pi/2^r) \rangle$.

Theorem (C, Perdrix, 2025)

Two graph states are LC_r -equivalent iff the two corresponding graphs are related by r-local complementations.

For r = 1, we recover local Clifford \Leftrightarrow local complementation.

Theorem (<u>C</u>, Perdrix, 2025)

Two graph states are LU-equivalent iff the two corresponding graphs are related by r-local complementations for some r.

An infinite hierarchy of local equivalences

An infinite hierarchy of local equivalences

An infinite hierarchy of local equivalences

Proof that r-local complementation captures LU-equivalence

Definition (Odd neighbourhood)

Given a set of vertices D, the **odd neighbourhood** $Odd_G(D)$ of D is the set of vertices that are neighbours of an odd number of vertices in D.

Definition (Odd neighbourhood)

Given a set of vertices D, the **odd neighbourhood** $Odd_G(D)$ of D is the set of vertices that are neighbours of an odd number of vertices in D.

Definition (Odd neighbourhood)

Given a set of vertices D, the **odd neighbourhood** $Odd_G(D)$ of D is the set of vertices that are neighbours of an odd number of vertices in D.

Definition

A **local set** is a non-empty vertex set of the form $L = D \cup Odd_G(D)$. A **minimal local set** is a local set that is minimal by inclusion (i.e it doesn't strictly contain another local set).

a minimal local set

(Minimal) local sets are LU-invariant, i.e. two LU-equivalent graph states have the same minimal local sets.

(Minimal) local sets are LU-invariant, i.e. two LU-equivalent graph states have the same minimal local sets.

Local sets \Leftrightarrow stabilizers of the graph state : $X_D Z_{Odd(D)}$.

(Minimal) local sets are LU-invariant, i.e. two LU-equivalent graph states have the same minimal local sets.

Local sets \Leftrightarrow stabilizers of the graph state : $X_D Z_{Odd(D)}$.

Minimal local sets \Leftrightarrow stabilizers of minimal support.

(Minimal) local sets are LU-invariant, i.e. two LU-equivalent graph states have the same minimal local sets.

Local sets \Leftrightarrow stabilizers of the graph state : $X_D Z_{Odd(D)}$.

Minimal local sets \Leftrightarrow stabilizers of minimal support.

Minimal local sets carry information on the possible local unitaries that maps graph states to other graph states.

Minimal local sets cover any graph

Theorem (C, Perdrix, 2024)

Each vertex of a graph is covered by at least one minimal local set.

Proof sketch: Standard form for graph states

Proof sketch: Standard form for graph states

Proof sketch: Standard form for graph states

Application 1: a toolbox to prove LU=LC for classes of graphs
Proposition (C, Perdrix, 2025)

Suppose $n \leq 2^{r+3} - 1$. If two graph states over n qubits are LU-equivalent then they are LC_r -equivalent i.e. $LU=LC_r$.

Proposition (C, Perdrix, 2025)

Suppose $n \leq 2^{r+3} - 1$. If two graph states over n qubits are LU-equivalent then they are LC_r -equivalent i.e. $LU=LC_r$.

In particular:

• If $n \leq 15$, LU=LC;

Proposition (C, Perdrix, 2025)

Suppose $n \leq 2^{r+3} - 1$. If two graph states over n qubits are LU-equivalent then they are LC_r -equivalent i.e. $LU=LC_r$.

In particular:

- If $n \leq 15$, LU=LC;
- If $n \leq 31$, LU=LC₂.

Proposition (C, Perdrix, 2025)

Suppose $n \leq 2^{r+3} - 1$. If two graph states over n qubits are LU-equivalent then they are LC_r -equivalent i.e. $LU=LC_r$.

In particular:

- If $n \leq 15$, LU=LC;
- If $n \leq 31$, LU=LC₂.

Corollary

To prove that LU = LC for some graph state on less that 31 qubits, it is enough to prove that any 2-local complementation can be implemented with usual local complementations.

Proposition (C, Perdrix, 2025)

Suppose $n \leq 2^{r+3} - 1$. If two graph states over n qubits are LU-equivalent then they are LC_r -equivalent i.e. $LU=LC_r$.

In particular:

- If $n \leq 15$, LU=LC;
- If $n \leq 31$, LU=LC₂.

Corollary

To prove that LU = LC for some graph state on less that 31 qubits, it is enough to prove that any 2-local complementation can be implemented with usual local complementations.

Proposition (C, Perdrix, 2025)

LU=LC for graph states up to 19 qubits.

A graphical characterization for LU=LC

Proposition (C, Perdrix, 2024)

LU=LC for $|G\rangle$ if there exists $|G'\rangle$ such that:

- $|G\rangle$ and $|G'\rangle$ are LC-equivalent;
- G' is in standard form;
- Any r-local complementation over V_X can be implemented by usual local complementations.

Example: LU=LC for repeater graph states

It was conjectured that LU=LC holds for some repeater graph states (Tzitrin, 2018). We showed that this is indeed the case.

Application 2: a quasi-polynomial algorithm for LU-equivalence

Application 3: A quasi-polynomial algorithm to decide local unitary equivalence

Theorem (C, Perdrix, 2025)

There exists an algorithm that decides if two graph states are LU-equivalent with runtime $n^{\log_2(n)+O(1)}$.

Step 1: Standard form

Step 1: Standard form

Step 2: Reduction to LC-equivalence with constraints

Step 2: Reduction to LC-equivalence with constraints

Summary

• An infinite strict hierarchy of local equivalence;

- An infinite strict hierarchy of local equivalence;
- LU=LC for graph states up to 19 qubits;

- An infinite strict hierarchy of local equivalence;
- LU=LC for graph states up to 19 qubits;
- A quasi-polynomial algorithm for LU-equivalence.

• Does there exist a counter-example to the LU=LC conjecture between 20 and 26 qubits ?

• Does there exist a counter-example to the LU=LC conjecture between 20 and 26 qubits ?

• Does there exist a polynomial-time algorithm for LU-equivalence ?

Thanks

arXiv:2409.20183 arXiv:2502.06566