Deciding Local Unitary Equivalence of Graph States in Quasi-Polynomial Time

Nathan Claudet and Simon Perdrix

ICALP 2025 - 10/07/25

Graph states and local complementation

Graph states

A graph state is a quantum state represented by an undirected and simple graph. The vertices represent the qubits and the edges represent entanglement.

¹Edges do not have a direction.

²No multiples edges and no loops.

Entanglement of graph states

Graph states are useful entangled resources (MBQC, quantum networks...) \rightarrow It is a fundamental problem to know whether two graph states have the same entanglement, i.e. are **LU-equivalent** (local unitary).

Entanglement of graph states

Graph states are useful entangled resources (MBQC, quantum networks...) \rightarrow It is a fundamental problem to know whether two graph states have the same entanglement, i.e. are **LU-equivalent** (local unitary).

Local complementation

Definition (Kotzig, 1966)

A local complementation on a vertex u consists in complementing the (open) neighbourhood of u.

Local complementation

Definition (Kotzig, 1966)

A local complementation on a vertex u consists in complementing the (open) neighbourhood of u.

Local complementation

Definition (Kotzig, 1966)

A local complementation on a vertex u consists in complementing the (open) neighbourhood of u.

Algorithmic aspect of local complementation

Proposition (Bouchet, 1991)

There exists an efficient algorithm to recognize whether two graphs are related by a sequence local complementations.

Local complementation and entanglement

Local complementation preserves the entanglement of a graph state.

Local complementation and entanglement

Local complementation preserves the entanglement of a graph state.

The converse is false:

 \rightarrow 27-qubit pair of graph states that are LU-equivalent but not related by local complementations (Ji et al. 2008).

A generalization of local complementation that captures LU-equivalence

A sequence of local complementations may leave the graph invariant.

A sequence of local complementations may leave the graph invariant.

A sequence of local complementations may leave the graph invariant.

A sequence of local complementations may leave the graph invariant.

A sequence of local complementations may leave the graph invariant.

A sequence of local complementations may leave the graph invariant.

A sequence of local complementations may leave the graph invariant.

A **2-local complementation** consists in toggling every edge that was toggled 2 mod 4 times by the idempotent local complementations.

A sequence of local complementations may leave the graph invariant.

A **2-local complementation** consists in toggling every edge that was toggled 2 mod 4 times by the idempotent local complementations.

r-local complementation

- ightarrow 3-local complementation is defined as a refinement of idempotent 2-local complementation
- \rightarrow 4-local complementation is defined as a refinement of idempotent 3-local complementation

. . .

ightarrow r-local complementation is defined as a refinement of idempotent (r-1)-local complementation

Conditions for r-local complementation

A 2-local complementation over S is valid if every pair or triplet of vertices outside of S has an even number of common neighbors in S.

Conditions for r-local complementation

A 2-local complementation over S is valid if every pair or triplet of vertices outside of S has an even number of common neighbors in S.

In general, there are $O(n^{r+1})$ parity conditions to check for a r-local complementation to be valid.

r-local complementation and LU-equivalence

Theorem (C., Perdrix 2024)

Two LU-equivalent graph states a related by a sequence of local complementations containing a single **r-local complementation**.

An algorithm for LU-equivalence

Standard form

Standard form

Standard form

Solving for r-local complementation

Solving for r-local complementation

 $O(n^{r+1})$ parity conditions to check for a valid *r*-local complementation. \rightarrow solving a linear system with $O(n^{r+1})$ equations.

Solving for r-local complementation

 $O(n^{r+1})$ parity conditions to check for a valid r-local complementation. \rightarrow solving a linear system with $O(n^{r+1})$ equations.

Deciding LU-equivalence is done in complexity $O(n^{r+1})$.

Bounding *r*

Proposition (this work)

Two LU-equivalent n-qubit graph states a related by a sequence of local complementations containing a single r-local complementation where

$$r \leqslant \log_2\left(\frac{n+1}{8}\right)$$

Bounding *r*

Proposition (this work)

Two LU-equivalent n-qubit graph states a related by a sequence of local complementations containing a single r-local complementation where

$$r \leqslant \log_2\left(\frac{n+1}{8}\right)$$

Theorem (this work)

There exists an algorithm that decides whether two graph states are LU-equivalent with runtime $n^{log_2(n)+O(1)}$.

Graphs for which local complementation captures LU-equivalence

We say that LU=LC for a graph state if local complementation captures the set of its LU-equivalent graph states.

We say that LU=LC for a graph state if local complementation captures the set of its LU-equivalent graph states.

It was previously known that LU=LC up to 8 qubits, and there there exists a 27-qubit pair for which LU \neq LC.

We say that LU=LC for a graph state if local complementation captures the set of its LU-equivalent graph states.

It was previously known that LU=LC up to 8 qubits, and there there exists a 27-qubit pair for which LU \neq LC.

Proposition (this work)

Two LU-equivalent n-qubit graph states a related by a sequence of local complementations containing a single r-local complementation where

$$r \leqslant \log_2\left(\frac{n+1}{8}\right)$$
 i.e. $n \leqslant 2^{r+3} - 1$

We say that LU=LC for a graph state if local complementation captures the set of its LU-equivalent graph states.

It was previously known that LU=LC up to 8 qubits, and there there exists a 27-qubit pair for which LU \neq LC.

Proposition (this work)

Two LU-equivalent n-qubit graph states a related by a sequence of local complementations containing a single r-local complementation where

$$r \leqslant \log_2\left(\frac{n+1}{8}\right)$$
 i.e. $n \leqslant 2^{r+3} - 1$

Corollary

LU=LC up to 15 qubits.

Improving the bound for LU=LC

Corollary

If $n \leq 31$, two LU-equivalent n-qubit graph states a related by a sequence of local complementations containing a single 2-local complementation.

Improving the bound for LU=LC

Corollary

If $n \leq 31$, two LU-equivalent n-qubit graph states a related by a sequence of local complementations containing a single 2-local complementation.

Corollary

To prove that LU = LC for some graph state on less that 31 qubits, it is enough to prove that any 2-local complementation can be implemented with usual local complementations.

Improving the bound for LU=LC

Corollary

If $n \leq 31$, two LU-equivalent n-qubit graph states a related by a sequence of local complementations containing a single 2-local complementation.

Corollary

To prove that LU = LC for some graph state on less that 31 qubits, it is enough to prove that any 2-local complementation can be implemented with usual local complementations.

Proposition (this work)

LU=LC for graph states up to 19 qubits.

The LU-equivalence of graph states can be decided in quasi-polynomial time. Also, LU=LC up to 19 qubits.

The LU-equivalence of graph states can be decided in quasi-polynomial time. Also, LU=LC up to 19 qubits.

Open questions:

• Can we make it polynomial?

The LU-equivalence of graph states can be decided in quasi-polynomial time. Also, LU=LC up to 19 qubits.

Open questions:

- Can we make it polynomial?
- LU=LC up to 26 qubits ?

Thanks

