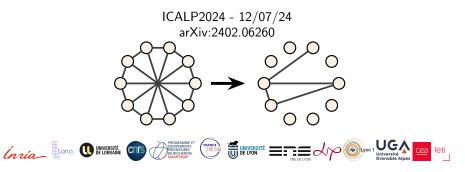
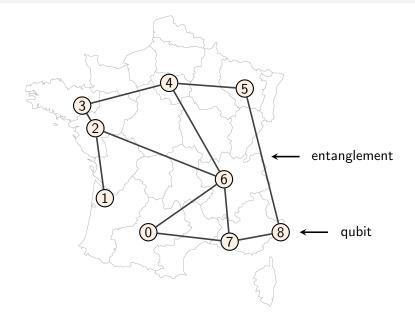
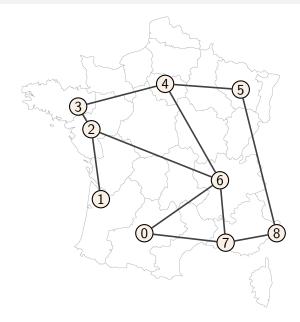
Vertex-minor universal graphs for generating entangled quantum subsystems

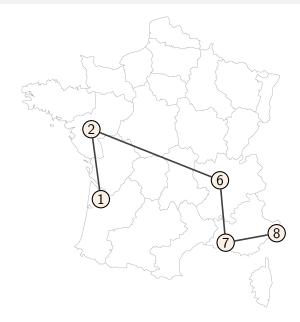
Maxime Cautrès, <u>Nathan Claudet</u>, Mehdi Mhalla, Simon Perdrix, Valentin Savin, Stéphan Thomassé

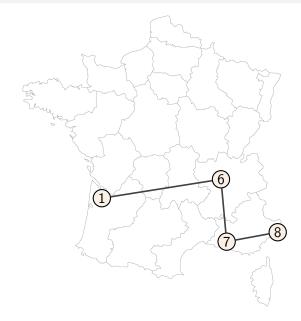


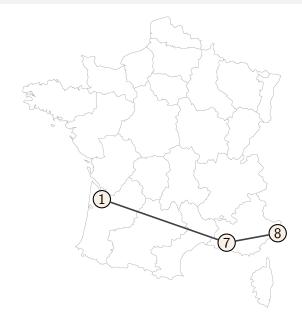
Motivation - quantum communication networks

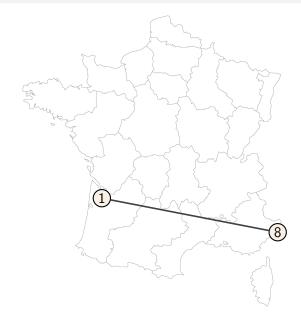












Can we create an EPR-pair between any two nodes using only local operations (and classical communication)?

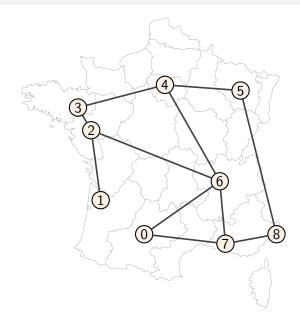
Can we create an EPR-pair between any two nodes using only local operations (and classical communication)?

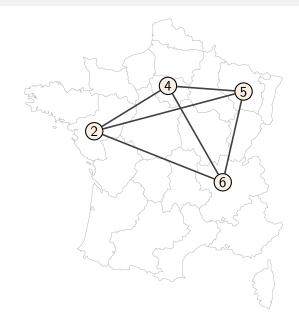
Yes, if (and only if) the graph is connected.

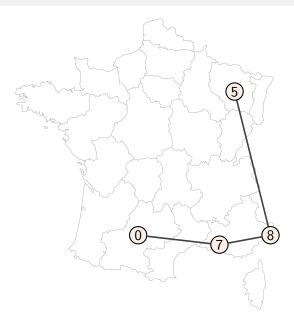
Can we create an EPR-pair between any two nodes using only local operations (and classical communication)?

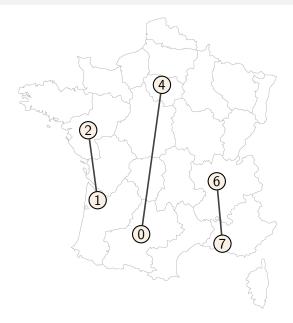
Yes, if (and only if) the graph is connected.

Natural question: What if we want to create any arbitrary **graph state** between any nodes?







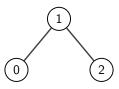


Graph states

Definition (Graph state)

Given an undirected and simple graph G = (V, E), a graph state $|G\rangle$ is a quantum state written as :

$$G \rangle = \left(\prod_{(u,v)\in E} CZ_{u,v}\right) |+\rangle_V$$

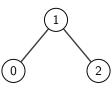


Graph states

Definition (Graph state)

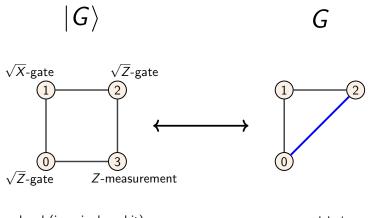
Given an undirected and simple graph G = (V, E), a graph state $|G\rangle$ is a quantum state written as :

$$|G\rangle = \left(\prod_{(u,v)\in E} CZ_{u,v}\right)|+\rangle_V$$



$$\begin{split} |G\rangle &= CZ_{0,1}CZ_{1,2}\left(|+\rangle_0 \otimes |+\rangle_1 \otimes |+\rangle_2\right) \\ &= \frac{1}{\sqrt{8}}\left(|000\rangle + |001\rangle + |010\rangle - |011\rangle + |100\rangle + |101\rangle - |110\rangle + |111\rangle\right) \end{split}$$

Correspondence between graph states and graphs



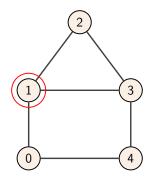
local (i.e. single-qubit) quantum operations

vertex deletions & local complementations

Local complementation

Definition

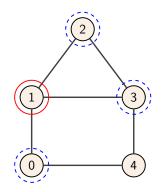
A local complementation on a vertex u consists in complementing the (open) neighborhood of u.



Local complementation

Definition

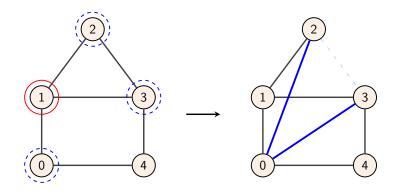
A local complementation on a vertex u consists in complementing the (open) neighborhood of u.



Local complementation

Definition

A local complementation on a vertex u consists in complementing the (open) neighborhood of u.

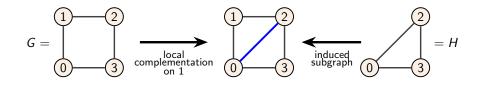


Vertex-minor universal graphs: definition

Vertex-minors

Definition (Vertex-minor)

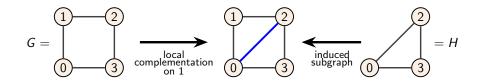
Given two graphs $G = (V_G, E_G)$ and $H = (V_H, E_H)$ such that $V_H \subseteq V_G$, H is a vertex-minor of G if H can be obtained as a induced subgraph of G by means of local complementations.



Vertex-minors

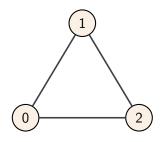
Definition (Vertex-minor)

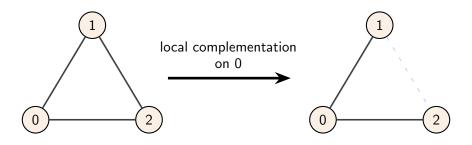
Given two graphs $G = (V_G, E_G)$ and $H = (V_H, E_H)$ such that $V_H \subseteq V_G$, H is a vertex-minor of G if H can be obtained as a induced subgraph of G by means of local complementations.

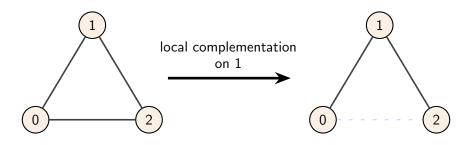


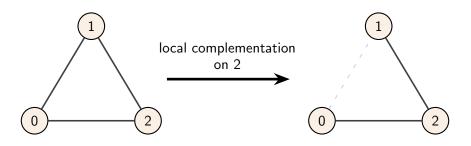
Definition

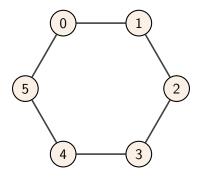
A graph G is *k*-vertex-minor universal if any graph on any k vertices is a vertex-minor of G.



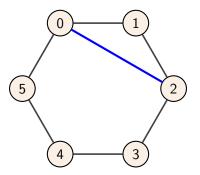






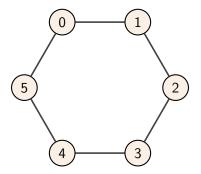


 C_6 is 3-vertex-minor universal.

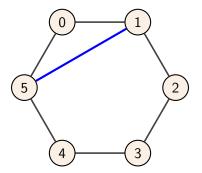


To induce the complete graph on $\{0, 1, 2\}$: Local complementation on 1.

 C_6 is 3-vertex-minor universal.

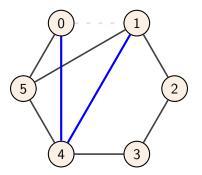


To induce the complete graph on $\{0, 1, 2\}$: Local complementation on 1.



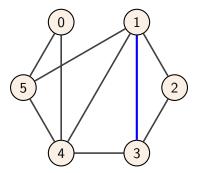
To induce the complete graph on $\{0, 1, 2\}$: Local complementation on 1. To induce the empty graph on $\{0, 1, 2\}$: Local complementation on 0,

 C_6 is 3-vertex-minor universal.



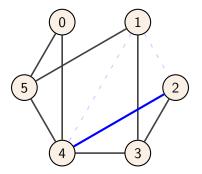
To induce the complete graph on $\{0,1,2\}$: Local complementation on 1. To induce the empty graph on $\{0,1,2\}$: Local complementation on 0, on 5,

 C_6 is 3-vertex-minor universal.



To induce the complete graph on $\{0, 1, 2\}$: Local complementation on 1. To induce the empty graph on $\{0, 1, 2\}$: Local complementation on 0, on 5, on 2,

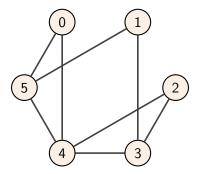
 C_6 is 3-vertex-minor universal.



To induce the complete graph on $\{0, 1, 2\}$: Local complementation on 1. To induce the empty graph on $\{0, 1, 2\}$: Local complementation on 0, on 5, on 2, on 3.

k-vertex-minor universal graphs : example 2

 C_6 is 3-vertex-minor universal.



To induce the complete graph on $\{0, 1, 2\}$: Local complementation on 1. To induce the empty graph on $\{0, 1, 2\}$: Local complementation on 0, on 5, on 2, on 3.

Proposition

If G is k-vertex-minor universal, any graph state on any k qubits of $|G\rangle$ can be induced by local operations and classical communication.

An upper bound on *k*-vertex-minor universality

For an arbitrary k, existence of k-vertex-minor universal graphs ?

For an arbitrary k, existence of k-vertex-minor universal graphs ? Of reasonable size ?

For an arbitrary k, existence of k-vertex-minor universal graphs ? Of reasonable size ?

A lower bound:

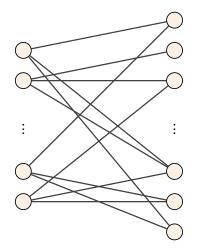
Proposition

A k-vertex-minor universal graph is of order $\Omega(k^2)$.

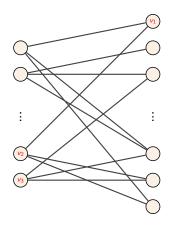
Existence of (random) k-vertex-minor universal graphs of order $\Theta(k^2)$

Outline of the construction

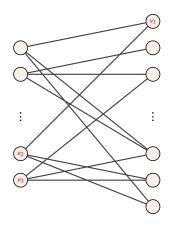
Random bipartite graph $G = (L \cup R, E)$ (the probability of an edge existing between L and R is 1/2). $|L| = \Theta(k \ln(k))$, $|R| = \Theta(k^2)$.



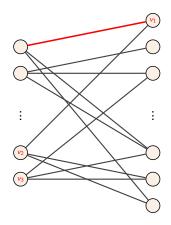
Given any fixed set of k vertices:



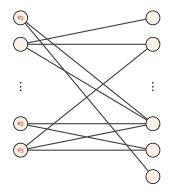
Given any fixed set of k vertices:



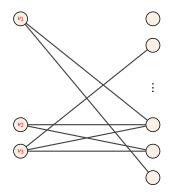
Given any fixed set of k vertices:



Given any fixed set of k vertices:

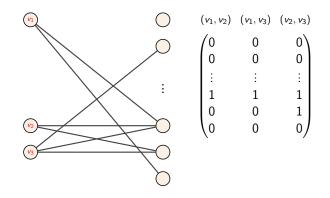


Given any fixed set of k vertices:



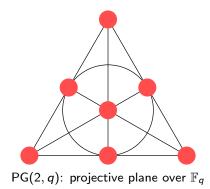
Given any fixed set of k vertices:

- 1 Move every vertex to the left by means of pivoting.
- 2 Check if the incidence matrix if of full rank.



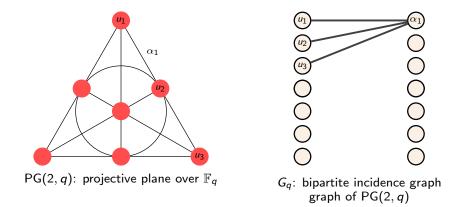
Explicit construction of k-vertex-minor universal graphs of order $O(k^4)$

Projective planes



Key feature: Any two distinct lines intersect in one unique point, and for any two distinct points there is one unique line containing them.

Projective planes



Key feature: Any two distinct lines intersect in one unique point, and for any two distinct points there is one unique line containing them.

Vertex-minor universal graphs from projective planes

Theorem

 G_q (of order $\Theta(q^2)$) is $\Omega(\sqrt{q})$ -vertex-minor universal.

Conclusion

k-vertex-minor universal graphs:

- Probabilistic construction of order $\Theta(k^2)$.
- Explicit construction of order $O(k^4)$.

Future work:

k-vertex-minor universal graphs:

- Probabilistic construction of order $\Theta(k^2)$.
- Explicit construction of order $O(k^4)$.

Future work:

• Better explicit construction of k-vertex-minor universal graphs.

k-vertex-minor universal graphs:

- Probabilistic construction of order $\Theta(k^2)$.
- Explicit construction of order $O(k^4)$.

Future work:

- Better explicit construction of k-vertex-minor universal graphs.
- Quantum-wise: what if we allow more than 1 qubit per party ?

Thanks

arXiv:2402.06260