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Graph states and k-pairability

A graphical interpretation of k-pairability using vertex-minors

Main result : Existence of small k-pairable states

1 k-vertex-minor universal graphs

Conclusion
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Graph states

Given a graph G = (V, E), a graph state |G) is a quantum state written
as :

|G>: H CZU,V |+>V
(u,v)EE

where CZ, , is the controlled-Z gate acting on the qubits u and v.

4/22



Graph states

Given a graph G = (V, E), a graph state |G) is a quantum state written

|G) = ( H CZU,V) |+>V

(u,v)EE

where CZ, , is the controlled-Z gate acting on the qubits u and v.

|G) = CZ201CZ1o(|4)o ® |[+)1 @ [4+)5)
- % (/000) + [001) + [010) — [011) + [100) + [101) — [110) + [111))
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~  EPR-pair (|00> + |11))
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Notion introduced by Sergey Bravyi, Yash Sharma, Mario Szegedy, Ronald
de Wolf in " Generating k EPR-pairs from an n-party resource state”
(2022). Motivation : Quantum communication networks.



Notion introduced by Sergey Bravyi, Yash Sharma, Mario Szegedy, Ronald
de Wolf in " Generating k EPR-pairs from an n-party resource state”
(2022). Motivation : Quantum communication networks.

Definition (k-pairable state) |

A n-qubit quantum state [¢)) is k-pairable if for any k disjoint pairs of
qubits {a1, b1}, {a2, bo}, ..., {ak, bk} there exits an LOCC (Local
Operations and Classical Communication) protocol that transforms |¢)
into |m).

_ ~ k EPR-pairs and
|7T> T OJORNO, n — 2k isolated qubits
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k-pairable states : example 1

|K3) is 1-pairable.

7/22



k-pairable states : example 1

|K3) is 1-pairable.
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|K3) is 1-pairable.
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k-pairable states : example 1

|K3) is 1-pairable.
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Z-measurement on 2
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k-pairable states : example 2

|G) is 2-pairable.
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k-pairable states : example 2

|G) is 2-pairable.
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k-pairable states : example 2

|G) is 2-pairable.
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Sufficient condition on G for |G) to be k-pairable ?
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Local complementation

Given a graph G, a local complementation on a vertex u consists in
complementing the (open) neighborhood of u in G.
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Local complementation

Given a graph G, a local complementation on a vertex u consists in
complementing the (open) neighborhood of u in G.

A local complementation on G can be implemented by local operations on
1G).

11/22



Vertex-minors

Given two graphs G = (Vg, Eg) and H = (Viy, Ey) such that Vy C Vg,
H is a vertex-minor of G if H can be obtained from G by means of local
complementations and vertex deletions.
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Vertex-minors

Given two graphs G = (Vg, Eg) and H = (Viy, Ey) such that Vy C Vg,
H is a vertex-minor of G if H can be obtained from G by means of local
complementations and vertex deletions.
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A graph state |G) is k-pairable if any perfect matching on any 2k vertices
is a vertex-minor of G.
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k-pairable states : example 1

|G) is 1-pairable.
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k-pairable states : example 1

|G) is 1-pairable.

>

vertex-deletion on 1
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k-pairable states : example 1

|G) is 1-pairable.
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vertex-deletion on 2

13/22



k-pairable states : example 1

|G) is 1-pairable.

vertex-deletion on 0
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k-pairable states : example 2

|G) is 2-pairable.
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k-pairable states : example 2

|G) is 2-pairable.

To induce the pairs (0,1) and (2,3) : local complementation on 7
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k-pairable states : example 2

|G) is 2-pairable.

To induce the pairs (0,1) and (2,3) : local complementation on 7, then
local complementation on 6
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k-pairable states : example 2
|G) is 2-pairable.

To induce the pairs (0,1) and (2,3) : local complementation on 7, then
local complementation on 6, then vertex-deletions on 4,5,6,7,8 and 9.
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Existence of small k-pairable states

For any k, there exists a k-pairable state on n = 23% qubits.
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Existence of small k-pairable states

For any k, there exists a k-pairable state on n = 23k qubits. I

Does there exists k-pairable state where n = poly(k) ?
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Existence of small k-pairable states

For any k, there exists a k-pairable state on n = 23k qubits.

Does there exists k-pairable state where n = poly(k) ?
Yes !

For any k, there exists a k-pairable state on n = O(k3In3(k)) qubits. I
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k-vertex-minor universal graphs

Recall that a sufficient condition on |G) to be k-pairable is that G has
every perfect matching on any 2k vertices as its vertex-minors.
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k-vertex-minor universal graphs
Recall that a sufficient condition on |G) to be k-pairable is that G has

every perfect matching on any 2k vertices as its vertex-minors.
Natural extension :

A graph G is k-vertex-minor universal if any graph on any k vertices is a
vertex-minor of G.
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k-vertex-minor universal graphs
Recall that a sufficient condition on |G) to be k-pairable is that G has

every perfect matching on any 2k vertices as its vertex-minors.
Natural extension :

A graph G is k-vertex-minor universal if any graph on any k vertices is a
vertex-minor of G.

If G is a k-vertex-minor universal graph, then one can induce any stabilizer
state of on any set of k qubits in the corresponding graph state |G) by
LOCC protocols.
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k-vertex-minor universal graphs

Recall that a sufficient condition on |G) to be k-pairable is that G has
every perfect matching on any 2k vertices as its vertex-minors.
Natural extension :

A graph G is k-vertex-minor universal if any graph on any k vertices is a
vertex-minor of G.

If G is a k-vertex-minor universal graph, then one can induce any stabilizer
state of on any set of k qubits in the corresponding graph state |G) by
LOCC protocols.

If G is a 2k-vertex-minor universal graph, then |G) is a k-pairable graph
state.
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Existence of small k-vertex-minors universal graphs

For any k, there exists a k-vertex-minor universal graph of order
n = O(k*In(k)).
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Conclusion

Results on k-pairable states and k-vertex-minor universal graphs.

Future work:
o Explicit constructions

o k-pairability = 2k-vertex-minor universality ?
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