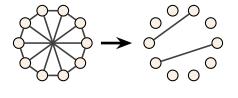
Small k-pairable states

Nathan Claudet, Mehdi Mhalla, Simon Perdrix

Quantum days at AMU - 20/09/23 arXiv:2309.09956



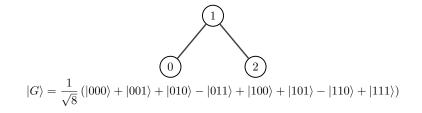
Graph states

Definition (Graph state)

Given a graph G = (V, E), a graph state $|G\rangle$ is a quantum state written as :

$$G\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in 2^V} (-1)^{|G[x]|} |x\rangle$$

where |G[x]| is the number of edges in the subgraph induced by x.





k-pairability

Notion introduced by Sergey Bravyi, Yash Sharma, Mario Szegedy, Ronald de Wolf in "Generating k EPR-pairs from an n-party resource state" (2022). Motivation : Quantum communication networks.

k-pairability

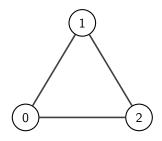
Notion introduced by Sergey Bravyi, Yash Sharma, Mario Szegedy, Ronald de Wolf in "Generating k EPR-pairs from an n-party resource state" (2022). Motivation : Quantum communication networks.

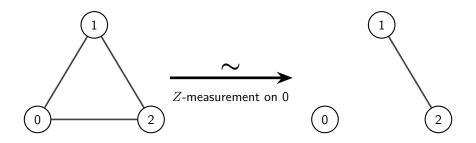
Definition (k-pairable state)

A *n*-qubit quantum state $|\psi\rangle$ is *k*-pairable if for any *k* disjoint pairs of qubits $\{a_1, b_1\}, \{a_2, b_2\}, \ldots, \{a_k, b_k\}$ there exits an LOCC (Local Operations and Classical Communication) protocol that transforms $|\psi\rangle$ into $|\pi\rangle$.

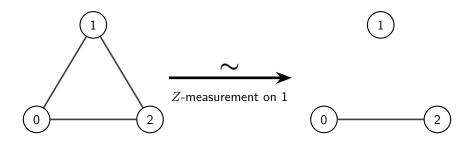
$$|\pi\rangle = \left| \begin{array}{c} a_1 a_2 \cdots a_k \\ \int b_1 b_2 \cdots b_k \end{array} \bigcirc \bigcirc \cdots \bigcirc \right\rangle \sim \begin{array}{c} k \text{ EPR-pairs and} \\ n-2k \text{ isolated qubits} \end{array}$$

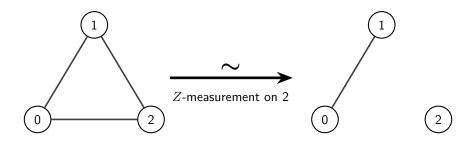
 $|K_3
angle$ is 1-pairable.

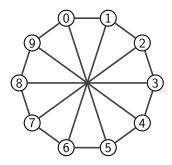


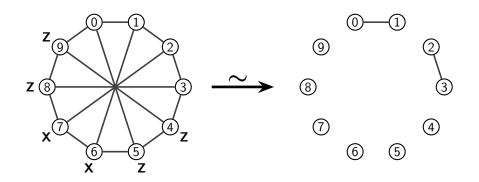


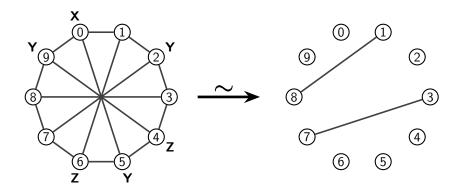
 $|K_3
angle$ is 1-pairable.





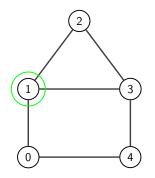




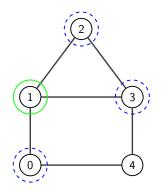


Sufficient condition on G for $|G\rangle$ to be k-pairable ?

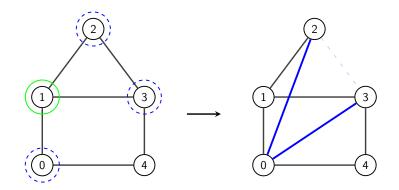
Given a graph G, a local complementation on a vertex u consists in complementing the (open) neighborhood of u in G.



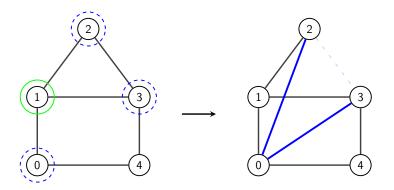
Given a graph G, a local complementation on a vertex u consists in complementing the (open) neighborhood of u in G.



Given a graph G, a local complementation on a vertex u consists in complementing the (open) neighborhood of u in G.



Given a graph G, a local complementation on a vertex u consists in complementing the (open) neighborhood of u in G.

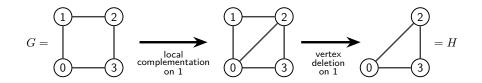


A local complementation on G can be implemented by local operations on $|G\rangle$.

Vertex-minors

Definition (Vertex-minor)

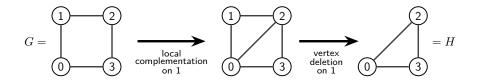
Given two graphs $G = (V_G, E_G)$ and $H = (V_H, E_H)$ such that $V_H \subseteq V_G$, H is a vertex-minor of G if H can be obtained from G by means of local complementations and vertex deletions.



Vertex-minors

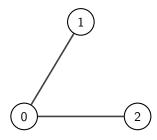
Definition (Vertex-minor)

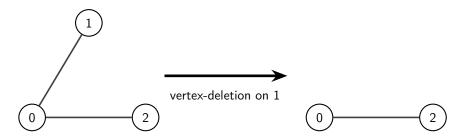
Given two graphs $G = (V_G, E_G)$ and $H = (V_H, E_H)$ such that $V_H \subseteq V_G$, H is a vertex-minor of G if H can be obtained from G by means of local complementations and vertex deletions.

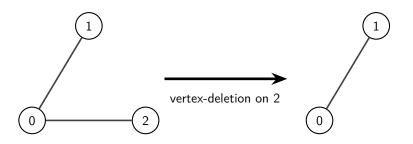


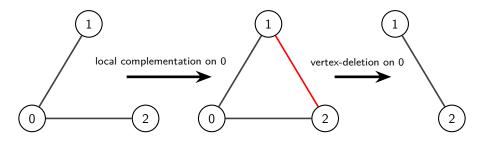
Proposition

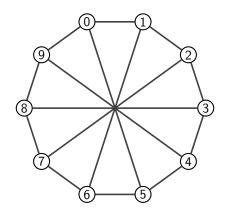
A graph state $|G\rangle$ is k-pairable if any perfect matching on any 2k vertices is a vertex-minor of G.



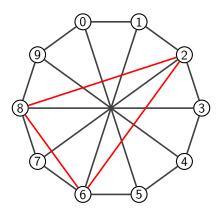






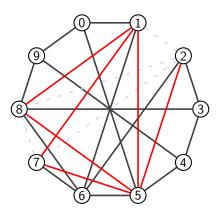


 $|G\rangle$ is 2-pairable.



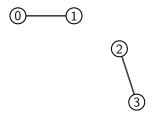
To induce the pairs (0,1) and (2,3) : local complementation on 7

 $|G\rangle$ is 2-pairable.



To induce the pairs (0,1) and (2,3) : local complementation on 7, then local complementation on 6

 $|G\rangle$ is 2-pairable.



To induce the pairs (0,1) and (2,3): local complementation on 7, then local complementation on 6, then vertex-deletions on 4,5,6,7,8 and 9.

To sum up

- A quantum state is said k-pairable if we can transform it into any k EPR-pairs on any 2k qubits using LOCC protocols.
- We have a condition on a graph G for the corresponding graph state $|G\rangle$ to be k-pairable. This condition is useful for the proofs of our results.

Towards small k-pairable states

Proposition (Bravyi et al. 2022)

For any k, there exists a k-pairable state on $n = 2^{3k}$ qubits.

Towards small k-pairable states

Proposition (Bravyi et al. 2022)

For any k, there exists a k-pairable state on $n = 2^{3k}$ qubits.

Does there exists k-pairable state where n = poly(k) ?

Proposition (Bravyi et al. 2022)

For any k, there exists a k-pairable state on $n = 2^{3k}$ qubits.

Does there exists k-pairable state where n = poly(k) ? Yes !

Proposition

For any k, there exists a k-pairable state on $n = O(k^3 \ln^3(k))$ qubits.

Recall that a sufficient condition on $|G\rangle$ to be k-pairable is that G has every perfect matching on 2k vertices as its vertex-minors.

Recall that a sufficient condition on $|G\rangle$ to be k-pairable is that G has every perfect matching on 2k vertices as its vertex-minors. Natural extension :

Definition

A graph G is k-vertex-minor-universal if any graph on any k vertices is a vertex-minor of G.

Recall that a sufficient condition on $|G\rangle$ to be k-pairable is that G has every perfect matching on 2k vertices as its vertex-minors. Natural extension :

Definition

A graph G is k-vertex-minor-universal if any graph on any k vertices is a vertex-minor of G.

Proposition

If G is a k-vertex-minor-universal graph, then one can induce any stabilizer state of on any set of k qubits in the corresponding graph state $|G\rangle$ by LOCC protocols.

Recall that a sufficient condition on $|G\rangle$ to be k-pairable is that G has every perfect matching on 2k vertices as its vertex-minors. Natural extension :

Definition

A graph G is k-vertex-minor-universal if any graph on any k vertices is a vertex-minor of G.

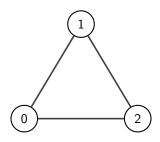
Proposition

If G is a k-vertex-minor-universal graph, then one can induce any stabilizer state of on any set of k qubits in the corresponding graph state $|G\rangle$ by LOCC protocols.

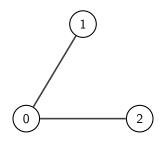
Corollary

If G is a 2k-vertex-minor-universal graph, then $|G\rangle$ is a k-pairable graph state.

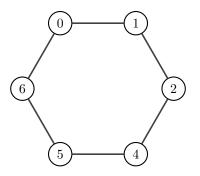
 K_3 is 2-vertex-minor-universal.



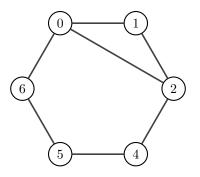
 K_3 is 2-vertex-minor-universal.



 C_6 is 3-vertex-minor-universal.



 C_6 is 3-vertex-minor-universal.



Towards small k-vertex-minors-universal graphs

Proposition

For any k, there exists a k-vertex-minor-universal graph of order $n = O(k^4 \ln(k))$.

Some other results

• Upper bounds : a graph state $|G\rangle$ is not $\left(\left\lceil \frac{\delta_{loc}(G)}{2} \right\rceil + 1\right)$ -pairable, and is not $\left(\left\lceil \frac{\tau(G) + \log_2(\tau(G))}{4} \right\rceil + 1\right)$ -pairable.

Some other results

- Upper bounds : a graph state $|G\rangle$ is not $\left(\left\lceil \frac{\delta_{loc}(G)}{2} \right\rceil + 1\right)$ -pairable, and is not $\left(\left\lceil \frac{\tau(G) + \log_2(\tau(G))}{4} \right\rceil + 1\right)$ -pairable.
- Alternative version of k-pairability that is robust in the presence of errors or malicious parties

Some other results

- Upper bounds : a graph state $|G\rangle$ is not $\left(\left\lceil \frac{\delta_{loc}(G)}{2} \right\rceil + 1\right)$ -pairable, and is not $\left(\left\lceil \frac{\tau(G) + \log_2(\tau(G))}{4} \right\rceil + 1\right)$ -pairable.
- Alternative version of k-pairability that is robust in the presence of errors or malicious parties

graph G	order	$\delta_{loc}(G)$	1-p?	2-vmu?	3-vmu?	2-p?	4-vmu?	5-vmu?	3-p?
K_2	2	1	yes	no					
K_3	3	2	yes	yes	no				
C_6	6	2	yes	yes	yes	no	no	no	no
"Wheel" graph	10	3	yes	yes	yes	yes	yes	no	no
Petersen graph	10	3	yes	yes	yes	yes	yes	no	no
13-Paley graph	13	4	yes	yes	yes	yes	yes	no	no
17-Paley graph	17	4	yes	yes	yes	yes	yes	yes	no
29-Paley graph	29	10	yes	yes	yes	yes	yes	yes	yes

• Practical results :

Results on *k*-pairable states and *k*-vertex-minor-universal graphs.

Future work:

- Explicit constructions
- k-pairability = 2k-vertex-minor-universality ?

arXiv:2309.09956